Skip Nav Destination
Close Modal
Search Results for
hot extrusion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 662 Search Results for
hot extrusion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004006
EISBN: 978-1-62708-185-6
... Abstract Hot extrusion is a process in which wrought parts are formed by forcing a heated billet through a shaped die opening. This article discusses nonlubricated and lubricated hot extrusion. The two nonlubricated hot extrusion methods are forward or direct extrusion and backward or indirect...
Abstract
Hot extrusion is a process in which wrought parts are formed by forcing a heated billet through a shaped die opening. This article discusses nonlubricated and lubricated hot extrusion. The two nonlubricated hot extrusion methods are forward or direct extrusion and backward or indirect extrusion. The article illustrates the significance of extrusion speeds and temperatures in hot extrusion. It describes the basic types of presses used in the hot extrusion of metals. The article provides information on the characterization of extruded shapes and explains the operating parameters, including extrusion velocity, amount of pressure required, and type of lubricant, for successful and efficient hot extrusion. The article concludes with a discussion on applications and design methodology that provides insight into CAD/CAM of extrusion dies.
Image
Published: 01 January 1990
Fig. 32 Principal types of hot extrusion processes. (a) Straight extrusion. (b) Controlled extrusion
More
Image
Published: 01 January 2005
Image
Published: 01 January 1990
Fig. 13 Three methods for the hot extrusion of powder mixtures. (a) Loose-powder method. (b) Billet method. (c) Steel can method. Source: Ref 7
More
Image
Published: 30 September 2015
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006534
EISBN: 978-1-62708-207-5
... Abstract This article describes the direct hot extrusion process and the typical sequence of operations for producing extruded aluminum shapes from soft and medium-grade aluminum alloys, hard alloys, and aluminum-matrix composites. It discusses key process variables, including extrusion speed...
Abstract
This article describes the direct hot extrusion process and the typical sequence of operations for producing extruded aluminum shapes from soft and medium-grade aluminum alloys, hard alloys, and aluminum-matrix composites. It discusses key process variables, including extrusion speed and exit temperature, and their effect on product quality. The article also provides information on extrusion presses, press dies, and tooling, and addresses quality issues such as surface defects, blistering, and internal cracking. It concludes with a discussion on the drawing of solid section and aluminum tube.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
.... Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives...
Abstract
This article describes die wear and failure mechanisms, including thermal fatigue, abrasive wear, and plastic deformation. It summarizes the important attributes required for dies and the properties of the various die materials that make them suitable for particular applications. Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives of dies: alloying surface treatments, micropeening, and electroplating.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001021
EISBN: 978-1-62708-161-0
... as related topics; including stress-induced fatigue failure, tolerances, machining allowances; and the fundamentals of hammer and press forgings, hot upset forgings, and hot extrusion forgings. closed-die forgings design stress calculations hot extrusion forgings hot upset forgings machining...
Abstract
Forgings are classified in various ways, beginning with the general classifications open die and closed die. They are also classified according to how they are made; such as hammer upset forgings, ring-rolled forgings, and multiple-ram press forgings; and in terms of the close-to-finish factor or amount of stock that must be removed to satisfy the dimensional and detail requirements of the finished part. In addition to types and classifications, the article discusses critical design factors and ways to ensure that the resulting forgings measure up to metallurgical, mechanical property, and dimensional accuracy requirements. The responsibility for design verification is vested in material control, which depends on the proper application of drawings, specifications, manufacturing process controls, and quality assurance programs. The article addresses each of these areas as well as related topics; including stress-induced fatigue failure, tolerances, machining allowances; and the fundamentals of hammer and press forgings, hot upset forgings, and hot extrusion forgings.
Image
in Metallography and Microstructures of Magnesium and Its Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 35 ZK60A-F extrusion. (a) Longitudinal view of banded hot-worked structure. Small, recrystallized grains. Light islands are solid-solution deficient in zinc and zirconium (due to alloy segregation) and so more resistant to hot working. Etchant 6, then etchant 4 ( Table 7 ). 250×. (b
More
Image
Published: 01 January 2001
Fig. 3 The fused deposition modeling (FDM) hot melt extrusion process. Courtesy of Penn State University
More
Image
Published: 01 January 1990
(special pieces) 4. Hot extrusion Aluminum cermets with moderate amounts of hard-phase additions 5. Infiltration TiC parts with nickel- or cobalt-base infiltrants and other cermets with about 55–85 vol% hard phase 6. Warm extrusion Cemented-carbide rods or other slender cermet parts 7. Slip
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006385
EISBN: 978-1-62708-192-4
... Abstract This article discusses two basic forms of extrusion: cold and hot. It provides information on three types of extrusion processes, namely, direct extrusion, reverse extrusion, and hydrostatic extrusion. The article also discusses the mechanics, analysis, tooling and die design...
Abstract
This article discusses two basic forms of extrusion: cold and hot. It provides information on three types of extrusion processes, namely, direct extrusion, reverse extrusion, and hydrostatic extrusion. The article also discusses the mechanics, analysis, tooling and die design of extrusion as well as thermodynamics. The finite-element method suitable for simulation of metal forming processes is explained. The article examines the extrusion defects that are divided into three different categories including surface, subsurface, and internal type. It includes information on friction and lubrication modeling of extrusion processes. The article also discusses the fundamentals of extrusion technology of titanium alloys and aluminum. It concludes with information on two forms of wear in extrusion, namely, adhesive and abrasive wear.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004032
EISBN: 978-1-62708-185-6
... or polymerbased lubricants and molybdenum disulfide for warm application; graphite suspensions in oil or water for hot forging steels; and glass films for titanium and superalloys hot forgings. The article describes the applications of lubricants in warm extrusion and forging, hot forging of steel, hot forging...
Abstract
This article lists functions of lubricants common to the majority of applications and processes. It discusses the lubricant candidates widely used in forging: conversion coatings with soaps (stearate compounds) and molybdenum disulfide for cold forging; oil-based thick, film oil or polymerbased lubricants and molybdenum disulfide for warm application; graphite suspensions in oil or water for hot forging steels; and glass films for titanium and superalloys hot forgings. The article describes the applications of lubricants in warm extrusion and forging, hot forging of steel, hot forging of aluminum, isothermal and hot die forging, and the extrusion of steel.
Image
Published: 01 January 2005
Fig. 14 Schematic showing the aperture details of (a) a shaped die and (b) a flat die for hot extrusion
More
Image
Published: 30 November 2018
in the hot extrusion of inhomogeneous material when the friction is high, as in the flow pattern in (c) and/or when the flow stress of the material in the cooler peripheral regions of the billet is significantly higher than that in the center. Source: Ref 6
More
Book Chapter