1-20 of 529

Search Results for hot dipping

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001270
EISBN: 978-1-62708-170-2
... considered in this article include metal coatings, such as zinc coatings, and alloy coatings, such as zinc-iron, types 1 and 2 aluminum, Zn-5AI, Zn-55AI, and lead-tin coatings. aluminum coatings continuous hot dip coatings ferrous metals lead-tin alloycoatings microstructure steel sheet surface...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003688
EISBN: 978-1-62708-182-5
... Abstract This article describes the basic principles, processing steps, and benefits of continuous hot dip coatings. It provides useful information on the principal types of coatings applied in the hot-dip process. The types of coatings include galvanized coatings, galvannealed coatings, 55Al...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001272
EISBN: 978-1-62708-170-2
... galvanizing equipment and galvanizing post treatments. alloying elements batch galvanizing equipment batch hot dip galvanized coatings cleaning coating thickness conventional batch galvanizing galvanizing galvanizing post treatment iron mechanical properties metallurgical characteristics...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003689
EISBN: 978-1-62708-182-5
... Abstract This article provides a discussion on the two basic steps of the batch hot dip galvanizing process: surface preparation and galvanizing. It describes the factors affecting coating thickness and coating structure. The mechanical properties of the coating and steel substrate are also...
Image
Published: 01 August 2013
Fig. 6 Schematic diagram of the pot region of a continuous hot dip metal coating line. Schematic redrawn based on Ref 2 and 3 More
Image
Published: 01 January 1994
Fig. 3 Schematic of pot region in a typical continuous hot dip coating line More
Image
Published: 01 January 1994
Fig. 8 Corrosion losses of hot dip coatings in the industrial environment of Bethlehem, PA. Source: Ref 18 More
Image
Published: 01 January 1994
Fig. 1 Photomicrograph of typical hot dip galvanized coating. The molten zinc is interlocked into the steel by the alloy reaction, which forms zinc-iron layers and creates a metallurgical bond. See Table 3 for properties of alloy layers. 250× More
Image
Published: 01 January 1994
Fig. 15 Effect of nickel additions to the galvanizing bath. (a) Typical hot dip galvanized coating on mild steel. (b) Coating on silicon-killed steel, galvanized in bath containing nickel additions. Note the relatively thin delta layer and the thick, coarse zeta layer in (b). Both 250×. Source More
Image
Published: 01 January 1994
Fig. 4 Typical hot dip galvanized coating. Note the gradual transition from layer to layer, which results in a strong bond between base metal and coating. More
Image
Published: 01 January 1994
Fig. 5 Service life versus coating thickness for hot dip galvanized steel in various atmospheres. Source: Ref 8 More
Image
Published: 01 January 1994
Fig. 6 Time to first maintenance versus coating thickness for hot dip galvanized coatings in seawater immersion and sea spray exposures. Source: Ref 11 More
Image
Published: 01 January 1990
Fig. 4 Photomicrograph of a typical hot dip galvanized coating. The molten zinc is interlocked into the steel by the alloy reaction, which forms zinc-iron layers and creates a metallurgical bond. 250× More
Image
Published: 01 January 1990
Fig. 5 Microstructure of continuously galvanized steel. In continuous hot dip galvanizing, the formation of various iron-zinc alloy layers is suppressed by the addition of 0.1 to 0.2% Al. More
Image
Published: 01 January 2006
Fig. 12 Corrosion-time plots for hot dip zinc, zinc-aluminum (55Al-1.5Si-43.5Zn), and aluminum-coated steel in (a) marine atmosphere (Kure Beach, NC: 250 m, or 800 ft, lot), (b) severe marine atmosphere (Kure Beach, NC: 25 m, or 80 ft, lot), and (c) industrial atmosphere (Bethlehem, PA) More
Image
Published: 01 January 2006
Fig. 3 Evolution of surface conditions on a draw die for a hot dip galvanized dual-phase 600 part of 1.4 mm (0.06 in.). (a) After ∼35,000 drawings. Chromium plated. (b) After ∼106,200 drawings. Thermal-diffusion (TD) VC treated. (c) and (d) Slightly roughened radii after ∼417,700 drawings. TD More
Image
Published: 01 January 2006
Fig. 8 Mild zinc buildup on die surfaces for hot dip galvanized dual-phase 600 parts of (a) 1.4 mm (0.06 in.) and (b) 1.9 mm (0.08 in.) More
Image
Published: 01 December 2004
Fig. 45 Microstructure of a hot dipped galvanized coating on a low-carbon steel sheet. Etched in 1% nitric acid/amyl alcohol. 1000× More
Image
Published: 01 December 2004
Fig. 48 Microstructure of a hot dipped Galfan coating on a low-carbon steel sheet. Etched in 2% nitric acid in amyl alcohol. Differential (Nomarski) interference contrast illumination. 1500× More
Image
Published: 31 October 2011
Fig. 13 Welding current range plot for three hot dipped galvannealed dual-phase steels. Source: Ref 6 More