Skip Nav Destination
Close Modal
Search Results for
honeycomb core failure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 118 Search Results for
honeycomb core failure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 8 Honeycomb core failure as a result of adequate skin-to-core adhesion. Bright-field illumination, 10× objective
More
Image
Published: 01 December 2004
Fig. 7 Micrograph of honeycomb core (cell wall) failure. Also shown is a small delaminated area in the carbon fiber plain weave composite near the edge of the fillet due to the stress on the core wall. The sample was mounted in Rhodamine-B-dyed epoxy casting resin. Slightly uncrossed polarized
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009083
EISBN: 978-1-62708-177-1
... and flatwise tensile tests. The article concludes with a description on the reasons for core failure, which are analyzed after these tests. honeycomb core crush honeycomb core failure honeycomb core movement honeycomb-cored sandwich panels skin-to-core bond strength tensile test transmitted...
Abstract
Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This article illustrates an area of a honeycomb-cored sandwich structure composite cross section that is viewed using transmitted polarized light. This area shows the differences in the constituents and resin intermingling. The article discusses the factors that govern the honeycomb core movement and honeycomb core crush, with illustrations. Some common tests performed on honeycomb composites to characterize the skin-to-core bond strength are the climbing drum peel and flatwise tensile tests. The article concludes with a description on the reasons for core failure, which are analyzed after these tests.
Image
Published: 01 December 2004
Fig. 10 Failure of a honeycomb-cored sandwich structure composite with areas of poor fillet formation and inadequate bond strength between the prepreg and film adhesive. Bright-field illumination, 10× objective
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003388
EISBN: 978-1-62708-195-5
... to meet the tool side. The sloping portion of the core is called the ramp region, and the solid laminate where the tool and bag faces come together is called the edgeband. Fig. 1 Honeycomb sandwich construction Sandwich Panel Failure Modes Honeycomb panel failures can be divided...
Abstract
A sandwich structure is comprised of layered composite materials formed by bonding two or more thin facings or facesheets to a relatively thick core material. This article describes the sandwich panel failure modes. It tabulates the nomenclature and definitions for loads, geometry, and material properties. The article illustrates critical strength-check locations for a flat sandwich panel. It discusses the analysis methods formulated for flat rectangular honeycomb panels; curved sandwich panel; and for each of the various sandwich panel failure modes. The article concludes with a discussion on flat panel stability analysis methods.
Image
Published: 01 December 2004
Fig. 5 Micrographs of an unprepared honeycomb sandwich composite structure after climbing drum peel testing showing the adhesive surface after failure and the separated honeycomb core. Dark-field illumination, 65 mm macrophotograph
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003489
EISBN: 978-1-62708-195-5
... bondline and, in extreme cases where fast heat-up rates are used, actual delaminations within the composite laminate plies. If honeycomb is used in the structure, moisture can turn to steam resulting in node bond failures or blown core. Relatively thin composite laminates (3.17 mm, or 0.125 in., or less...
Abstract
Adhesive bonding is used to assemble composite components into larger structures. Finished components that are damaged during assembly or service are often repaired with adhesive-bonding techniques. This article summarizes criteria for adhesive selection and illustrates typical secondary adhesively bonded joint configurations. It discusses the highly loaded joint considerations of adhesives. The article describes the epoxy adhesives commonly used for the bonding or repair of composite structures. It discusses the surface preparation of composites and metals, and honeycomb processing, including perimeter trimming, mechanical forming, heat forming, core splicing, contouring, and cleaning. The article presents basic steps involved in the adhesive-bonding process and concludes with a discussion on adhesive applications and tooling.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006457
EISBN: 978-1-62708-190-0
... that leads to adhesion failures is caused by improper cleaning of the honeycomb core prior to bonding. This condition results if glycol (which is often used to support the core when it is machined) is not completely removed prior to bonding. Incomplete removal of glycol will cause a weak bond to exist...
Abstract
Adhesive-bonded joints are extensively used in aircraft components and assemblies where structural integrity is critical. This article addresses the problem of how to inspect bonded assemblies so that all discrepancies are identified. It describes several inspection techniques and presents drawbacks and limitations of these techniques. Generic flaw types and flaw-producing mechanisms are listed in a table. The article discusses metal-to-metal defects, adherend defects, honeycomb sandwich defects, repair defects, and in-service defects. It reviews the methods applicable to the inspection of bonded structures, including visual inspection, ultrasonic inspection, X-ray radiography, and neutron radiography. The evaluation and correlation of inspection results are also discussed. The article concludes with information on the effects of ultrasonic wave interference in the ultrasonic inspection of adhesive-bonded joints.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003457
EISBN: 978-1-62708-195-5
... and significantly degrades mechanical properties. Fluid also degrades the honeycomb cell wall, which increases the ease of water migration. Eventually, when a honeycomb cell is full of water, the expansion during freezing is strong enough to cause the skin to delaminate from the core. During repairs, water must...
Abstract
This article provides non-proprietary and non-competition-sensitive information related to aircraft applications. It presents an overview of reliability and commonly used measurements. Failure modes that cause the negative performance are reviewed based on many types of sources. These include manufacturer service bulletins, reliability and customer service departments, literature reviews, demonstration programs, in-service evaluations, design guides, and surveys of commercial and military aircraft maintenance organizations. The article also describes lessons learned while attempting to avoid overlapping maintainability, reparability, and materials choice.
Image
Published: 01 December 2004
Fig. 6 (a) Micrograph of a honeycomb sandwich structure composite after climbing drum peel testing showing areas of the core remaining on the aramid fiber composite facesheet. The microcrack pattern of the composite facesheet was enhanced by the use of DYKEM Steel Red dye, which was applied
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003455
EISBN: 978-1-62708-195-5
... can also be less expensive to build as well as easier to maintain than equivalent honeycomb designs. The same cannot be said for designs involving a combination of honeycomb sandwich cores, in which water collects, and ultrathin composite facesheets, through which it passes. The design of bonded...
Abstract
This article discusses the requirements for designing repairable composite structures such as a honeycomb sandwich panel construction and integrally stiffened co-cured composite structures. It reviews the general and specific design guidelines for bolted or riveted repairs and adhesively bonded repairs of the composite structures. The article presents several examples to illustrate how these repairs can be achieved.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003467
EISBN: 978-1-62708-195-5
... edge at the top of the photo. The wing spar is in the shape of a box spar with upper and lower carbon/epoxy and glass/epoxy caps and shear webs made of Nomex honeycomb core and glass/epoxy skins. Fig. 8 Section of failed wing spar Test Procedures and Results Further examination...
Abstract
This article describes the results of several case history studies of the failure of polymer-matrix composite components to provide not only some representative types of failures that can encounter, but also to provide some insight into the investigative process. These case histories deal mainly with structures that exhibit an initial material and/or manufacturing defect or failures that are most prevalent and most easily solved. The components include helicopter rotor blade, composite wing spar, and aircraft rudder.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002194
EISBN: 978-1-62708-188-7
... up of hard, abrasive nonmetallic fibers or particles in a soft metal matrix, they present unusual machining problems. Tool wear, for example, is much more severe than that encountered in machining the matrix metal alone. Honeycomb structures consist of a core formed into hexagonal-shaped cells...
Abstract
This article presents general guidelines for machining metal matrix composites (MMC) and honeycomb structures. It provides guidelines for machining of specific MMCs, namely, aluminum-boron, aluminum-SiC, aluminum-Al 2 O 3 , and titanium-SiC MMCs. In addition, the article discusses the various parameters influencing drilling of dissimilar-material laminates.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003459
EISBN: 978-1-62708-195-5
... an adhesive bond failure between joined structures. They usually are observed with a face sheet disbonding from an underlying sandwich core material. Core Damage Core damage can occur with any type of core. Causes of core damage include handling damage in manufacturing, impact, improper vacuum bagging...
Abstract
This article begins with an overview of the various types of damage that take place in advanced composite components. These include holes and punctures, delaminations, disbonds, core and resin damage, and water intrusion. The article describes various damage detection techniques, such as visual inspection, tap testing, and ultrasonic inspection, in field conditions. Designing for repair involves various considerations including structure types and repair types. The types of repairs together with other issues surrounding advanced composite repair technology are discussed. The article also provides a discussion on the design considerations, instructions, and materials for repair. It explains various paint-removal methods for composites. The article concludes with a discussion on curing equipment such as portable repair systems, vacuum bags, and ovens and autoclaves.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003392
EISBN: 978-1-62708-195-5
... can reduce the effective laminate modulus and cause a redistribution of stress that eventually leads to fiber breakage and finally, laminate failure. Damage tolerance can be improved by using toughened resin systems that resist crack propagation. The use of honeycomb core in frequent-impact areas...
Abstract
This article describes common design criteria and identifies the design considerations that have a significant effect on the end product. The design criteria include cost, size, mechanical properties, repeatability and precision of parts, damage tolerance and durability, and environmental constraints.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
..., structures have been developed whereby the composite layers are separated by a lightweight material, making a sandwich structure. Typical materials used for the sandwich materials are honeycomb core or foam materials. Honeycomb core materials are usually based on Nomex (E.I. du Pont de Nemours and Company...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003444
EISBN: 978-1-62708-195-5
... Strength of Honeycomb Core Materials Peel C 364 Edgewise Compressive Strength of Flat Sandwich Constructions Edgewise compression C 365 Flatwise Compressive Properties of Sandwich Cores Flatwise compression C 393 Flexural Properties of Sandwich Constructions Flexure C 394 Shear Fatigue...
Abstract
This article explores why structural element and subcomponent testing are conducted. It discusses the different types of failure modes in composites, and provides information on the testing methodology, fixturing, instrumentation, and data reporting. The article reviews various standard elements used to characterize composite materials for the various failure modes. Simple structural-element testing under in-plane unidirectional, multidirectional, and combined loading, as well as out-of-plane loading are discussed. Simple bolted and bonded joints, as well as data correlation are reviewed with analytical predictions. The article also provides a list of the ASTM testing standards applicable at the element level of testing for both polymer-matrix composites and metal-matrix composites. It concludes with a discussion on durability and damage tolerance testing.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003434
EISBN: 978-1-62708-195-5
... temperature is usually −18 °C (0 °F) or lower. Fig. 4 Relationship of storage, mechanical, and handling lives of a prepreg. Prepreg and adhesives may be returned to storage one or more times provided their handling lives have not been exceeded. Honeycomb core is packaged and stored in a manner...
Abstract
In-process inspection during composite material lay-up is essential if the structural, dimensional, and environmental performance designed into a part is to be consistently achieved. This article discusses the requirements to be met by the facilities and equipment to produce high-quality composites. It reviews the procedures that are allowed and prohibited in controlled-contamination areas of lay-up. The article emphasizes significant areas, such as material control and lay-up process, in which quality-control personnel can be effective in preventing production problems. It concludes with a discussion on automated tape laying and fiber placement, as well as the numerically aided lay-up process.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003456
EISBN: 978-1-62708-195-5
... an aramid or fiberglass paper honeycomb, aluminum honeycomb, foam, or balsa wood material. Sandwich structures composed of a solid laminate plus an equivalent core thickness will be seven times the stiffness and almost four times the strength of the monolithic skin alone. However, thin- skinned sandwich...
Abstract
Maintainability is a function of the durability, damage tolerance, and repairability of a structure. This article discusses the configurations of composite structures, such as sandwich, stiffened-skin, and monolithic structures, used in commercial aircraft composites. It describes the considerations for maintainability of the composite structures during the conceptual design phase. Sources of the defects and damage, such as manufacturing defects and in-service defects, are reviewed. The article describes the nondestructive inspection methods that are used in the repair of composite structures to locate damage, characterize the extent of damage, and ensure post-repair quality. It lists suggestions that can be used as design guidelines for adhesive bonding, general composite structure, sandwich structure, material selection, and lightning-strike protection. The article also provides the basic considerations for personnel, facilities, and equipment during maintenance.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003475
EISBN: 978-1-62708-195-5
... are usually thin, and most components are, in fact, sandwich structures with composite facesheets. Some sandwich panels consist of precured facesheets adhesively bonded to the aluminum honeycomb core. The “cocured” sandwich, in which the facesheet and the adhesive are cured simultaneously, is becoming common...
Abstract
This article discusses composites for unmanned space vehicles and provides an overview of key design drivers, challenges, and environment for use of composites in spacecraft, launch vehicles, and missiles. It describes the design allowable properties of composite materials. The article provides information on the specific state-of-the-art applications of composite materials for spacecraft missiles and launch vehicles. A discussion on the key applications, including solid rocket motor casings, payload fairings, and payload support structures, is presented.
1