Skip Nav Destination
Close Modal
Search Results for
honeycomb composite structures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 210
Search Results for honeycomb composite structures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009083
EISBN: 978-1-62708-177-1
... Abstract Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This article illustrates an area of a honeycomb-cored sandwich structure composite cross section that is viewed using transmitted polarized light. This area shows...
Abstract
Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This article illustrates an area of a honeycomb-cored sandwich structure composite cross section that is viewed using transmitted polarized light. This area shows the differences in the constituents and resin intermingling. The article discusses the factors that govern the honeycomb core movement and honeycomb core crush, with illustrations. Some common tests performed on honeycomb composites to characterize the skin-to-core bond strength are the climbing drum peel and flatwise tensile tests. The article concludes with a description on the reasons for core failure, which are analyzed after these tests.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002194
EISBN: 978-1-62708-188-7
... Abstract This article presents general guidelines for machining metal matrix composites (MMC) and honeycomb structures. It provides guidelines for machining of specific MMCs, namely, aluminum-boron, aluminum-SiC, aluminum-Al 2 O 3 , and titanium-SiC MMCs. In addition, the article discusses...
Abstract
This article presents general guidelines for machining metal matrix composites (MMC) and honeycomb structures. It provides guidelines for machining of specific MMCs, namely, aluminum-boron, aluminum-SiC, aluminum-Al 2 O 3 , and titanium-SiC MMCs. In addition, the article discusses the various parameters influencing drilling of dissimilar-material laminates.
Image
Published: 01 December 2004
Fig. 1 Honeycomb sandwich structure composite cross section (∼1 μm ultrathin section) showing differences in the constituents and resin intermingling. Transmitted crossed polarized light with a 530 nm compensator plate. This micrograph and the insets are expanded to 200× magnification. (A–C
More
Image
Published: 01 December 2004
Fig. 2 Ultrathin section of an area of a honeycomb sandwich composite structure showing the effects of core movement during manufacturing and the resulting deformation and separation of the prepreg plies. (a) Transmitted crossed polarized light, 20× objective. (b and c) Transmitted polarized
More
Image
Published: 01 December 2004
Fig. 3 Ultrathin section of areas of the honeycomb sandwich composite structure where resin was found to span the separated prepreg plies after core movement. (a) Transmitted light, phase contrast, 40× objective. (b and c) Transmitted light, phase contrast, 20× objective
More
Image
Published: 01 December 2004
Fig. 5 Micrographs of an unprepared honeycomb sandwich composite structure after climbing drum peel testing showing the adhesive surface after failure and the separated honeycomb core. Dark-field illumination, 65 mm macrophotograph
More
Image
Published: 01 December 2004
Fig. 6 (a) Micrograph of a honeycomb sandwich structure composite after climbing drum peel testing showing areas of the core remaining on the aramid fiber composite facesheet. The microcrack pattern of the composite facesheet was enhanced by the use of DYKEM Steel Red dye, which was applied
More
Image
Published: 01 December 2004
Fig. 10 Failure of a honeycomb-cored sandwich structure composite with areas of poor fillet formation and inadequate bond strength between the prepreg and film adhesive. Bright-field illumination, 10× objective
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009077
EISBN: 978-1-62708-177-1
... composite structure. In this figure, the 3k-70 plain weave carbon fabric plies are easily observed, as are voids in the structure. Fig. 12 Montage of a chamfer area in a honeycomb composite part made with carbon fabric prepreg skins. Bright-field illumination, 5× objective. A magnified view...
Abstract
Analyzing the structure of composite materials is essential for understanding how the part will perform in service. Assessing fiber volume variations, void content, ply orientation variability, and foreign object inclusions helps in preventing degradation of composite performance. This article describes the optical microscopy and bright-field illumination techniques involved in analyzing ply terminations, prepreg plies, splices, and fiber orientation to provide the insight necessary for optimizing composite structure and performance.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
... provides an insight into the micro- and macrostructure of fiber-reinforced composites. composite materials composite-toughening methods dispersed-phase toughening fiber-reinforced composites honeycomb composite structures interlayer toughening macrostructure matrix-toughening methods...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003455
EISBN: 978-1-62708-195-5
... Abstract This article discusses the requirements for designing repairable composite structures such as a honeycomb sandwich panel construction and integrally stiffened co-cured composite structures. It reviews the general and specific design guidelines for bolted or riveted repairs...
Abstract
This article discusses the requirements for designing repairable composite structures such as a honeycomb sandwich panel construction and integrally stiffened co-cured composite structures. It reviews the general and specific design guidelines for bolted or riveted repairs and adhesively bonded repairs of the composite structures. The article presents several examples to illustrate how these repairs can be achieved.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003375
EISBN: 978-1-62708-195-5
... Structure , Composites , Vol 1 , Engineered Materials Handbook , ASM International , 1986 • Hexcel Cross-Core data sheet , Hexcel Composites • Kindinger J. , “HexWeb Honeycomb Attributes and Properties,” Hexcel Composites , 1999 • Kindinger J. , “Honeycomb Sandwich...
Abstract
Lightweight structural cores are used on aircrafts to reduce weight and increase payload and fight distance. This article discusses the classification of lightweight structural cores, namely, honeycomb, balsa, and foam. It reviews the four primary manufacturing methods used to produce honeycomb: adhesive bonding and expansion, corrugation and adhesive bonding, corrugation and braze welding, and extrusion. The article describes cell configuration and properties of honeycomb. It discusses the factors influencing specification of structural cores, including materials, size, density, mechanical properties, environmental compatibility, formability, durability, and thermal behavior. The article provides information on the benefits and concepts of a sandwich panel containing lightweight structural cores.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003477
EISBN: 978-1-62708-195-5
... are of a honeycomb sandwich-type construction and are very similar to those fabricated for the 727 carbon-fiber-reinforced epoxy elevator. A 22% weight savings (55 kg, or 116 lb) was achieved on the stabilizer box. Fig. 3 Boeing 727 elevator structural arrangement Fig. 4 Boeing 737 composite...
Abstract
This article provides information on the applications of fiber-reinforced composites in commercial and military aircrafts. It tabulates the composite components in various types of aircraft. The applications of the composites in the components of Boeing 727, 737, 757, 767, 777, and 777-200 are schematically illustrated.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003489
EISBN: 978-1-62708-195-5
... secondary adhesively bonded joint configurations. It discusses the highly loaded joint considerations of adhesives. The article describes the epoxy adhesives commonly used for the bonding or repair of composite structures. It discusses the surface preparation of composites and metals, and honeycomb...
Abstract
Adhesive bonding is used to assemble composite components into larger structures. Finished components that are damaged during assembly or service are often repaired with adhesive-bonding techniques. This article summarizes criteria for adhesive selection and illustrates typical secondary adhesively bonded joint configurations. It discusses the highly loaded joint considerations of adhesives. The article describes the epoxy adhesives commonly used for the bonding or repair of composite structures. It discusses the surface preparation of composites and metals, and honeycomb processing, including perimeter trimming, mechanical forming, heat forming, core splicing, contouring, and cleaning. The article presents basic steps involved in the adhesive-bonding process and concludes with a discussion on adhesive applications and tooling.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003457
EISBN: 978-1-62708-195-5
... used under specified operating conditions ( Ref 1 ). The elements of this definition are worthy of further examination for how they apply to composite structures as opposed to system components and line replaceable units, which account for most of the reliability studies. To be judged “satisfactory...
Abstract
This article provides non-proprietary and non-competition-sensitive information related to aircraft applications. It presents an overview of reliability and commonly used measurements. Failure modes that cause the negative performance are reviewed based on many types of sources. These include manufacturer service bulletins, reliability and customer service departments, literature reviews, demonstration programs, in-service evaluations, design guides, and surveys of commercial and military aircraft maintenance organizations. The article also describes lessons learned while attempting to avoid overlapping maintainability, reparability, and materials choice.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003037
EISBN: 978-1-62708-200-6
... The information in this article is largely taken from J. Corden, Honeycomb Structure, Composites, Volume 1, Engineered Materials Handbook, ASM International, 1987, p 721–728. References References 1. Bitzer N. , “Honeycomb Sandwich Design and Testing,” PhD thesis, Century University , Los...
Abstract
Honeycomb is a product consisting of very thin sheets attached to form connecting cells. This article briefly explains the construction, core characteristics, properties, and testing methods of the honeycomb structures. It discusses the special processes carried out in customizing the shape of core to fit customer's specific needs. The article provides information on the basic concept of creating sandwich structures and its corresponding aspects like material selection, design guidelines, and structural efficiency.
Image
Published: 01 August 2018
Fig. 41 Thermoluminescent coating technique on boron composite aluminum honeycomb flap assembly. (a) Close-up of honeycomb structure. (b) Plot of intensity versus location for bonded joint at locations shown. (c) Plot of intensity versus location for unbonded joint at location shown
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003475
EISBN: 978-1-62708-195-5
... performance requirements and provide a cost-effective honeycomb panel structure for a specific application. Fig. 1 Example of a design trade-off study used to select optimal composite materials and processes Lamination theory is often used to predict laminate properties for use in materials...
Abstract
This article discusses composites for unmanned space vehicles and provides an overview of key design drivers, challenges, and environment for use of composites in spacecraft, launch vehicles, and missiles. It describes the design allowable properties of composite materials. The article provides information on the specific state-of-the-art applications of composite materials for spacecraft missiles and launch vehicles. A discussion on the key applications, including solid rocket motor casings, payload fairings, and payload support structures, is presented.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009078
EISBN: 978-1-62708-177-1
... direction. Bright-field illumination, 10× objective Voids in Honeycomb Core Composites The lay-up of honeycomb parts often results in voided areas in the composite structure as a result of low pressure in the facesheets and vacuum in the core during manufacturing. Voids are often found...
Abstract
Voids in fiber-reinforced composite materials are areas that are absent of the composite components: matrix (resin) and fibers. Voids have many causes but generally can be categorized as voids due to volatiles or as voids that result from entrapped air. This article describes the analysis of various types of voids. It reviews techniques for analysis of voids at ply-drops, voids due to high fiber packing, and voids that occur in honeycomb core composites. The final section of the article discusses void documentation through the use of nondestructive inspection techniques and density/specific gravity measurement methods.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003366
EISBN: 978-1-62708-195-5
...-up. The article illustrates the manufacturing process of phenolic honeycomb and provides information on the applications of phenolic composites. phenolic resins hot-melt process pultrusion vacuum infusion filament winding sheet molding hand lay-up phenolic honeycomb composites phenolic...
Abstract
This article describes the chemistry of phenolic resins and reviews their characteristics and properties for various composites fabrication processes. The fabrication processes include solution/hot-melt process, pultrusion, vacuum infusion, filament winding, sheet molding, and hand lay-up. The article illustrates the manufacturing process of phenolic honeycomb and provides information on the applications of phenolic composites.
1