1-20 of 69 Search Results for

high-temperature superconductors

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001114
EISBN: 978-1-62708-162-7
...Abstract Abstract The discovery of the high-critical-temperature oxide superconductors has accelerated the interest for superconducting applications due to its higher-temperature operation at liquid nitrogen or above and thus reduces the refrigeration and liquid helium requirement. It also...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001294
EISBN: 978-1-62708-170-2
...-temperature superconductors and ferroelectric materials. angular distribution ferroelectric materials high-temperature superconductors particulates pulsed-laser deposition pulsed-laser deposition equipment PULSED-LASER DEPOSITION (PLD) is a physical vapor deposition (PVD) technique that has...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003155
EISBN: 978-1-62708-199-3
... phases), and high-temperature ceramic superconductors. This article provides an overview of basic principles of superconductors and the different classes of superconducting materials and their general characteristics. A15 superconductors high-temperature superconductors niobium-titanium...
Image
Published: 01 December 2004
Fig. 6 A series of light and scanning electron micrographs of the high-temperature superconductor barium-yttrium copper oxide at increasing magnification. Original magnifications: (a) 70×, (b) and (d) 300×, (c) and (e) 1400×, and (f) 2800× More
Image
Published: 01 January 2005
Fig. 14 Typical results from the coextrusion of copper-clad/Ag-high-temperature superconductor core. (a) Processing map for Cu/Ag/YBCO. (b) Processing map for Cu/Ag/BSCCO. P , sound proportional flow; D , sound disproportional flow. Based on Ref 20 More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001108
EISBN: 978-1-62708-162-7
... materials, superconductivity, superconductors SINCE THE DISCOVERY of high-temperature superconductivity in 1986, pictures of the levitation of a magnet above a superconducting sheet have been widely published in both scientific and popular journals. Owing to the widespread distribution of levitation...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001109
EISBN: 978-1-62708-162-7
... resistance as a function of temperature for superconductivity discovered in mercury by Kamerling Onnes in 1911. Source: Ref 10 Fig. 2(b) Electrical resistance as a function of temperature for the first high-temperature ceramic (oxide-containing barium) superconductors discovered by Bednorz...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003049
EISBN: 978-1-62708-200-6
... for important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic components. Perhaps the most significant development in the area of advanced ceramics has been the discovery of high-temperature superconductors...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001113
EISBN: 978-1-62708-162-7
... kG). The obvious drawback for these materials is the need for liquid-helium cooling. Yet for some applications, especially detectors, the low temperature is necessary to reduce thermal noise. In this case a high T c is not a major advantage. Applications of Thin-Film Superconductors...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001111
EISBN: 978-1-62708-162-7
... formed with niobium or vanadium have the best superconducting properties ( 3(a) and Fig. 3(b) ). Nb 3 Ge held the high critical temperature ( T c ) record for 20 years at 23 K and has the highest critical temperature of the metal, or so-called low-temperature, superconductors. The high- T c...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001110
EISBN: 978-1-62708-162-7
... systems incorporating NbTi superconducting materials. The properties required in a successful stabilizing material are: High electrical and thermal conductivity High heat capacity Good mechanical strength at cryogenic temperature Good adherence to the superconductor Good ductility...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004008
EISBN: 978-1-62708-185-6
... provide sufficient heat to raise the temperature of the superconductor above T c ; this increase in temperature causes the normally high resistance to return. Commercial superconductors are designed to prevent and/or control the change to the nonsuperconducting state. Copper and aluminum are usually...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
... and various active devices. Glass insulators, ceramic heater substrates for microelectronics packaging, are all primarily used in this mode. Often, however, the ceramic material must exhibit other important characteristics, including temperature, corrosion and environmental stability, high mechanical strength...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004013
EISBN: 978-1-62708-185-6
... this failure in solder-clad/copper-core composites. Based on Ref 4 Apperley et al. ( Ref 20 ) used direct extrusion to investigate the coextrusion of silver-clad high-temperature superconductors (YBa 2 Cu 3 O 7 , or YBCO, and Bi-Sr-Ca-Cu-O, or BSCCO) in copper cans. These investigations revealed...
Book Chapter

By W.L. Johnson
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001095
EISBN: 978-1-62708-162-7
.... Synthesis and Processing Methods Rapid Quenching from the Melt As mentioned in the previous section, the production of metallic glasses by liquid quenching requires rather high cooling rates. To achieve such rates, heat must be extracted from the melt along a temperature gradient. A molten sample...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001112
EISBN: 978-1-62708-162-7
...Abstract Abstract Ternary molybdenum chalcogenides stands for a vast class of materials, whose general formula is MxMO6X8, where, M is a cation and X is a chalcogen (sulfur, selenium, or tellurium). Possible applications of some of these are as high field superconductors (that is, >20 T...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005228
EISBN: 978-1-62708-187-0
... and porosity, development of high-temperature superconductor crystals with superior current-carrying capacity, and the directional solidification of monotectic alloys. TEMPUS The second flight of the International Microgravity Laboratory supported experiments from the United States and 12 other...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001105
EISBN: 978-1-62708-162-7
... metallic and ceramic phases at the preparation temperature” ( Ref 1 , 2 ). A good definition of the term ceramic can be found in the Ceramic Glossary ( Ref 3 ): “Any of a class of inorganic, nonmetallic products which are subject to a high temperature during manufacture or use. Typically...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001079
EISBN: 978-1-62708-162-7
... temperatures and lowest vapor pressures of all metals. The refractory metals are readily degraded by oxidizing environments at moderately low temperatures, a property that has restricted the applicability of the metals in low-temperature or nonoxidizing high-temperature environments. Protective coating systems...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003056
EISBN: 978-1-62708-200-6
... ceramic shapes are often required that can be made only by joining together less complex shapes. Because the requirements of a ceramic joint can vary from application to application (e.g., hermeticity, ductile strain relief, corrosion resistance, high-temperature strength), the ability to tailor...