Skip Nav Destination
Close Modal
Search Results for
high-temperature gaseous corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 434 Search Results for
high-temperature gaseous corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003611
EISBN: 978-1-62708-182-5
... Abstract When metal is exposed to an oxidizing gas at elevated temperature, corrosion can occur by direct reaction with the gas, without the need for the presence of a liquid electrolyte. This type of corrosion is referred to as high-temperature gaseous corrosion. This article describes...
Abstract
When metal is exposed to an oxidizing gas at elevated temperature, corrosion can occur by direct reaction with the gas, without the need for the presence of a liquid electrolyte. This type of corrosion is referred to as high-temperature gaseous corrosion. This article describes the various forms of high-temperature gaseous corrosion, namely, high-temperature oxidation, sulfidation, carburization, corrosion by hydrogen, and hot corrosion.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003671
EISBN: 978-1-62708-182-5
... is often difficult because of the range of composition of the corrosive gaseous or molten environments and the variety of materials that may be used. Moreover, corrosion prediction is further complicated, because materials often degrade in a high-temperature environment of a given application by more than...
Abstract
This article provides information on the thermodynamics and kinetics of high-temperature corrosion. The thermodynamics of high-temperature corrosion reactions reveals what reactions are possible under certain conditions and kinetics explains how fast these possible reactions will proceed. The article describes the diffusion process that plays a key role in oxidation and other gaseous reactions with metals. It discusses the development of stress in oxide layers. The article presents the sample preparation methods for high-temperature testing, and expounds the measurement methods of high-temperature degradation. It reviews a number of potential processes, which are responsible for high-temperature corrosion. The article details a wide range of coatings and coating processes for protecting components in a variety of operating conditions. It also discusses the testing methods used for materials at high temperatures, including furnace tests, burner rig testing, and thermogravimetric analysis, and the test methods conducted at high temperature and high pressure.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003590
EISBN: 978-1-62708-182-5
... Abstract This article examines the characteristics and behavior of scale produced by various types of oxidation. The basic models, concepts, processes, and open questions for high-temperature gaseous corrosion are presented. The article describes the development of geometrically induced growth...
Abstract
This article examines the characteristics and behavior of scale produced by various types of oxidation. The basic models, concepts, processes, and open questions for high-temperature gaseous corrosion are presented. The article describes the development of geometrically induced growth stresses, transformation stresses, and thermal stresses in oxide scales. It discusses the ways in which stresses can be relieved. The article provides information on catastrophic oxidation, internal oxidation, sulfidation, alloy oxidation, selective oxidation, and concurrent oxidation. It illustrates the relationships between scale morphologies on binary alloys and concludes with a discussion on metal dusting and chlorine corrosion.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003716
EISBN: 978-1-62708-182-5
.... In most cases, corrosion resistance at high temperatures does not accompany the good mechanical properties of structural materials; therefore, protective coatings must be applied. Electrochemical principles are insufficient to understand the mechanism of oxidation. For gaseous reactions, a basic...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003577
EISBN: 978-1-62708-182-5
... electrolyte, usually water, and thus typically called aqueous corrosion. The second area is where corrosion takes place in a gaseous environment, often called oxidation, high- temperature oxidation, or high-temperature corrosion, and called gaseous corrosion here. These two areas have been (and still...
Abstract
This article provides a summary of the concepts discussed in the articles under the Section “Fundamentals of Corrosion” in ASM Handbook, Volume 13A: Corrosion: Fundamentals, Testing, and Protection. In this section, the thermodynamic aspects of corrosion are descried first followed by a group of articles discussing the fundamentals of aqueous corrosion kinetics. The fundamentals of gaseous corrosion are addressed next. The fundamental electrochemical reactions of corrosion and their uses are finally described.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003969
EISBN: 978-1-62708-183-2
... Corrosion 220 High-temperature gaseous corrosion High-Temperature Gaseous Corrosion 228 Oxidation High-Temperature Gaseous Corrosion (section on High-Temperature Oxidation) 230 Sulfidation High-Temperature Gaseous Corrosion (section on Sulfidation) 230 Carburization High...
Abstract
This article is a pictorial guide to forms of corrosion that draws attention to common pitfalls or situations that have caused premature corrosion, sometimes with expensive consequences. The examples used are not exhaustive; they highlight the necessity to fully examine materials, conditions, and specific circumstances that together can reduce the anticipated service life of a component or plant. The color images in this article are categorized according to the type of corrosion following the general order that is adopted in Volume 13A of ASM Handbook. The first table of the article provides a categorization of the forms of corrosion. It also provides a reference to articles or sections of articles in Volume 13A that detail the particular corrosion form or mechanism. The second table is a guide listing the figures in this article by material and by the corrosion form or mechanism illustrated.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003591
EISBN: 978-1-62708-182-5
... used in studying high-temperature corrosion. However, it should be stressed that the discontinuous methods have certain advantages. Discontinuous methods allow for examination of specimens after different lapse times, so it is possible to follow changes in scale and alloy structure at different stages...
Abstract
This article discusses two approaches for determining gaseous corrosion rates, one based on indirect (discontinuous) measurements, the other based on direct (continuous) measurements. It explains how corrosion rate data can be obtained indirectly by measuring scale thickness, scale weight per unit surface area, loss of metal thickness, loss of material weight per unit surface area, or weight change of oxidant bonded in the scale per unit surface area as a function of time. It also describes several continuous methods, including volumetric measurements, the manometric method, and thermogravimetric analysis, and the conditions under which they can be used.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
..., the range of the composition of corrosive gaseous or molten environments, and the variety of materials that may be used in a given power system. Moreover, corrosion prediction is further complicated because materials often degrade in a high-temperature environment of a given application by more than...
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003603
EISBN: 978-1-62708-182-5
.... Gaseous corrosion is usually associated with high-temperature environments. Atmospheric corrosion is not considered a part of gaseous corrosion because the corrosion reaction occurs in a thin aqueous layer on the surface of the metal. Galvanic and stray current corrosion are not environment specific...
Abstract
Corrosion is classified into two categories: corrosion that is not influenced by any other process and corrosion that is influenced by another process such as the presence of stresses or erosion. This article discusses uniform corrosion, localized corrosion, metallurgically influenced corrosion, and microbiologically influenced corrosion, which fit under the classification of corrosion that is not influenced by any outside process. It also explains mechanically assisted degradation and environmentally induced cracking, which fit under the classification of corrosion that is influenced by an outside process.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... Abstract High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005959
EISBN: 978-1-62708-168-9
... solution, with the result that corrosion protection is lost. A remedy for dissolving nitrogen or carbon into stainless steel without the formation of chromium nitrides or carbides would be choosing a high temperature at which nitrides/carbides are no longer stable or a low temperature at which...
Abstract
Low-temperature surface hardening is mostly applied to austenitic stainless steels when a combination of excellent corrosion performance and wear performance is required. This article provides a brief history of low-temperature surface hardening of stainless steel, followed by a discussion on physical metallurgy, including crystallographic identity, thermal stability and decomposition, nitrogen and carbon solubility in expanded austenite, and diffusion kinetics of interstitials. It provides a description of low-temperature nitriding and nitrocarburizing processes for primarily austenitic and, to a lesser extent, other types of stainless steels along with practical examples and industrial applications of these steels.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004189
EISBN: 978-1-62708-184-9
... “Molten Salt Corrosion,” “Liquid Metal Corrosion,” and “High-Temperature Gaseous Corrosion” in Corrosion: Fundamentals, Testing, and Protection , Volume 13A of ASM Handbook , 2003. Oxidation The reactor (or calciner), where the chemical reaction is taking place in an oxidizing environment...
Abstract
Understanding the high-temperature corrosion behavior of alloys is an important step toward the selection of appropriate alloys for process equipment. This article briefly describes the high-temperature corrosion modes that are frequently encountered in the chemical process industry. These modes include oxidation, carburization, metal dusting, nitridation, halogen corrosion, and sulfidation.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005986
EISBN: 978-1-62708-168-9
... on carbon steels. Basically the same type of structure also appears in high-alloyed tool steels ( Fig. 4 ). Austenitic stainless steels , which present a different structure depending on the treatment temperature ( Ref 6 – 8 ). At low temperatures, below 430 °C (805 °F), a nitrogen-rich, supersaturated...
Abstract
Nitriding is a general term for all processes based on the addition of nitrogen to the surface of steel. When carbon is added along with the nitrogen, the process is called nitrocarburizing. This article provides a detailed discussion on the functional and structural properties of nitrided layers. It describes the structural changes on the surface of carbon steels, alloy steels, and austenitic stainless steels. The article explains the effects of the various nitriding processes, namely, gaseous nitriding, plasma nitriding, gaseous nitrocarburizing, and salt bath nitrocarburizing, on the structure and properties of nitrided layers.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003630
EISBN: 978-1-62708-182-5
... by the coal fines and oxidized as a result of the high temperatures. Products of combustion, waste silica, and exhaust gas can erode heat-exchange tubes in a boiler. Burning biomass ( Ref 1 , 2 ) accelerates erosion-corrosion in power plants. Sliding wear can be a challenge on control valves ( Ref 3...
Abstract
This article provides a discussion on the mechanisms of wear and their interactions with gaseous corrosion. The wear mechanisms include abrasive, erosive, fretting, and sliding. The measurement of degradation on combustion walls in coal-fired boilers is discussed. The article concludes with information on the common coating techniques used for wear-corrosion control.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003588
EISBN: 978-1-62708-182-5
... of protective coatings. Fundamental Data Essential to an understanding of the gaseous corrosion of a metal are the crystal structure and the molar volume of the metal on which the oxide builds, both of which may affect growth stresses in the oxide. For high-temperature service, the melting point...
Abstract
Metals can react chemically with oxygen when exposed to air. Essential to an understanding of the gaseous corrosion of a metal are the crystal structure and the molar volume of the metal on which the oxide builds, both of which may affect growth stresses in the oxide. This article presents crystal structures and thermal properties of pure metals and oxides in a tabular form. The free energy of reaction, which describes the oxidation process of a pure divalent metal, is presented. The article illustrates the Richardson-Jeffes diagram, which is used in the determination of the standard Gibbs energy change of formation of oxides and the corresponding dissociation pressures of the oxides as a function of temperature. It demonstrates the Kellogg diagram which shows stability range in more complicated multioxidant systems. The article explains the determination of partial pressures of gas mixtures and partial pressures of volatile oxidation products.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004157
EISBN: 978-1-62708-184-9
... , HCl, and HF are considered to be corrosive at high temperatures. Reference Ref 4 reports typical ranges of concentrations in mass-burning units as 100 to 200 ppm SO 2 , 400 to 600 ppm HCl, and 5 to 20 ppm HF; in refuse-derived-fuel units (RDF) 200 to 400 ppm SO 2 , 600 to 800 HCl, and 10 to 30 ppm...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
...-filled blisters Cracking from precipitation of internal gaseous hydrogen Heavy steel sections Induced by high-temperature exposure followed by rapid cooling Hydrogen attack Steels subject to combined high-temperature and high-pressure hydrogen. Also affects copper Irreversible chemical...
Abstract
Hydrogen damage is a term used to designate a number of processes in metals by which the load-carrying capacity of the metal is reduced due to the presence of hydrogen. This article introduces the general forms of hydrogen damage and provides an overview of the different types of hydrogen damage in all the major commercial alloy systems. It covers the broader topic of hydrogen damage, which can be quite complex and technical in nature. The article focuses on failure analysis where hydrogen embrittlement of a steel component is suspected. It provides practical advice for the failure analysis practitioner or for someone who is contemplating procurement of a cost-effective failure analysis of commodity-grade components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also provided.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004185
EISBN: 978-1-62708-184-9
... encountered in NH 3 recovery systems. High-temperature corrosion will occur in hot dissociated NH 3 . Aluminum Alloys Aluminum and its copper-free alloys show good resistance to dry, gaseous NH 3 at ambient or elevated temperatures. Corrosion rates of<0.025 mm/yr (<1 mil/yr) at 21 °C (70 °F...
Abstract
Ammonia and ammonium hydroxide are not particularly corrosive in themselves, but corrosion problems can arise with specific materials, particularly when contaminants are present. This article discusses the corrosion resistance of materials used for the manufacture, handling, and storage of ammonia. These materials include aluminum alloys, iron and steel, stainless steels, nickel and its alloys, copper and its alloys, titanium and its alloys, zirconium and its alloys, niobium, tantalum, and nonmetallic materials.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... temperatures Needs sustained stress. Not relevant for impact-induced cracking Hydrogen-induced blistering Low-strength steels at ambient temperatures Hydrogen forms gas-filled blisters Cracking from precipitation of internal gaseous hydrogen Heavy steel sections Induced by high-temperature exposure...
Abstract
This article provides an overview of the classification of hydrogen damage. Some specific types of the damage are hydrogen embrittlement, hydrogen-induced blistering, cracking from precipitation of internal hydrogen, hydrogen attack, and cracking from hydride formation. The article focuses on the types of hydrogen embrittlement that occur in all the major commercial metal and alloy systems, including stainless steels, nickel-base alloys, aluminum and aluminum alloys, titanium and titanium alloys, copper and copper alloys, and transition and refractory metals. The specific types of hydrogen embrittlement discussed include internal reversible hydrogen embrittlement, hydrogen environment embrittlement, and hydrogen reaction embrittlement. The article describes preservice and early-service fractures of commodity-grade steel components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also reviewed.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004150
EISBN: 978-1-62708-184-9
... entrained gasification at elevated temperatures, with the incombustible fraction forming a slag that is water-quenched in the bottom of the gasifier to allow easy removal by lock-hoppers. The high-temperature gas product is cooled using a heat exchanger within the gasifier, and the gaseous impurities...
Abstract
The primary fossil fuels are generally defined as coal, oil, natural gas, tar sands, and shale oil. This article discusses the characteristics and the types of fuels used in fossil and fuel industries. It describes the energy conversion in fuels and outlines the efficiency of a heat engine with the help of the Carnot equation.
1