Skip Nav Destination
Close Modal
Search Results for
high-temperature environmental attack
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 632 Search Results for
high-temperature environmental attack
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack...
Abstract
The corrosion issues in the compressor, combustor and turbine sections of industrial gas turbines used in steam production generally depend on the quality of the fuel, air, and water used in the engine than on the specific industrial application. This article focuses on the forms of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion are predominant. The effect of high-temperature oxidation and hot corrosion on the mechanical properties of superalloys is also discussed.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003821
EISBN: 978-1-62708-183-2
... suffer environmentally assisted cracking are highly specific and therefore avoidable by proper design of the industrial components. corrosion corrosive environments environmentally assisted cracking high-temperature corrosion industrial applications nickel alloys NICKEL ALLOYS are very...
Abstract
This article reviews the corrosion behavior in various environments for seven important nickel alloy families: commercially pure nickel, Ni-Cu, Ni-Mo, Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe, and Ni-Fe-Cr. It examines the behavior of nickel alloys in corrosive media found in industrial settings. The corrosive media include: hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, nitric acid, organic acids, salts, seawater, and alkalis. The modes of high-temperature corrosion include oxidation, carburization, metal dusting, sulfidation, nitridation, corrosion by halogens, and corrosion by molten salts. Applications where the corrosion properties of nickel alloys are important factors in materials selection include the petroleum, chemical, and electrical power industries. Most nickel alloys are much more resistant than the stainless steels to reducing acids, such as hydrochloric, and some are extremely resistant to the chloride-induced phenomena of pitting, crevice attack, and stress-corrosion cracking (to which the stainless steels are susceptible). Nickel alloys are also among the few metallic materials able to cope with hot hydrofluoric acid. The conditions where nickel alloys suffer environmentally assisted cracking are highly specific and therefore avoidable by proper design of the industrial components.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003603
EISBN: 978-1-62708-182-5
.... Gaseous corrosion is usually associated with high-temperature environments. Atmospheric corrosion is not considered a part of gaseous corrosion because the corrosion reaction occurs in a thin aqueous layer on the surface of the metal. Galvanic and stray current corrosion are not environment specific...
Abstract
Corrosion is classified into two categories: corrosion that is not influenced by any other process and corrosion that is influenced by another process such as the presence of stresses or erosion. This article discusses uniform corrosion, localized corrosion, metallurgically influenced corrosion, and microbiologically influenced corrosion, which fit under the classification of corrosion that is not influenced by any outside process. It also explains mechanically assisted degradation and environmentally induced cracking, which fit under the classification of corrosion that is influenced by an outside process.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003969
EISBN: 978-1-62708-183-2
... Uniform Fig. 14 Type 20-20 cast High-temperature sulfidation and carburization Fig. 36 Nonferrous alloys Copper Intergranular attack Fig. 56 , Fig. 57 Copper Stress-corrosion cracking Fig. 64 , Fig. 65 Copper Localized pitting, formicary Fig. 41 , Fig. 42 Copper...
Abstract
This article is a pictorial guide to forms of corrosion that draws attention to common pitfalls or situations that have caused premature corrosion, sometimes with expensive consequences. The examples used are not exhaustive; they highlight the necessity to fully examine materials, conditions, and specific circumstances that together can reduce the anticipated service life of a component or plant. The color images in this article are categorized according to the type of corrosion following the general order that is adopted in Volume 13A of ASM Handbook. The first table of the article provides a categorization of the forms of corrosion. It also provides a reference to articles or sections of articles in Volume 13A that detail the particular corrosion form or mechanism. The second table is a guide listing the figures in this article by material and by the corrosion form or mechanism illustrated.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003844
EISBN: 978-1-62708-183-2
... oxidizing chemicals, strong solvents, extreme pHs, or combinations of these with high temperatures Source: Ref 3 These environmental descriptions are somewhat similar, to the extent that they progress from a relatively mild, noncorrosive environment to a relatively aggressive environment...
Abstract
Paints and protective coatings are the most common means of protecting materials from deterioration. This article focuses on coating degradation that results from the environmental interaction with the coatings. The major environmental influences of the degradation include energy (solar radiation, heat and temperature variation, and nuclear radiation), permeation (moisture, solvent retention, chemical, and oxygen), stress (drying and curing, vibration, and impact and abrasion), and biological influences (microbiological and macrobiological).
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... such environments are oxidizing. Increasing iron in the alloy increases its susceptibility to nitridation attack. Titanium and aluminum are also detrimental to nitridation attack ( Ref 18 ). Carbon-Nitrogen Interaction This type of high-temperature interaction can be found in centrifugally cast furnace tubes...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... to nitridation attack. Titanium and aluminum are also susceptible to nitridation attack ( Ref 21 ). Carbon-Nitrogen Interactions This type of high-temperature interaction is found in centrifugally cast furnace tubes made of HK-40 (26Cr-20Ni) and HL-40 (30Cr-20Ni) alloys used for many years in ethylene...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003139
EISBN: 978-1-62708-199-3
... effective in suppressing high-temperature oxidation up to and including the temperature at which the alloy normally ignites. The oxidation rate of magnesium in oxygen increases with temperature. At elevated temperature (approaching melting), the oxidation rate is a linear function of time. Cerium...
Abstract
This article discusses the effects of heavy metal impurities, environmental factors, the surface condition (such as as-cast, treated, and painted), and the assembly practice on the corrosion resistance of a magnesium or a magnesium alloy part. It provides information on stress-corrosion cracking and galvanic corrosion of magnesium alloys, as well as the surface protection of magnesium assemblies achieved by inorganic surface treatments.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004150
EISBN: 978-1-62708-184-9
... entrained gasification at elevated temperatures, with the incombustible fraction forming a slag that is water-quenched in the bottom of the gasifier to allow easy removal by lock-hoppers. The high-temperature gas product is cooled using a heat exchanger within the gasifier, and the gaseous impurities...
Abstract
The primary fossil fuels are generally defined as coal, oil, natural gas, tar sands, and shale oil. This article discusses the characteristics and the types of fuels used in fossil and fuel industries. It describes the energy conversion in fuels and outlines the efficiency of a heat engine with the help of the Carnot equation.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003840
EISBN: 978-1-62708-183-2
... these classes, ceramic materials and refractories differ in applications. Ceramics are used as structural substitutes for alloys in high-temperature environments, such as heat exchangers in the process industries and gas turbines in the aerospace and power-generation industries. Some typical ceramics...
Abstract
This article provides an overview of the environmental performance of the most commonly used nonmetallic materials, including elastomers, plastics, thermosetting resins, resin-matrix composites, organic coatings, concrete, refractories, and ceramics. It also discusses the applications and uses of these materials.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... cracking Alignment, vibration, balance High cycle, low stress: large fatigue zone; low cycle, high stress: small fatigue zone Attack morphology and alloy type must be evaluated Severity of exposure conditions can be excessive; check: pH, temperature, flow rate, dissolved oxidants...
Abstract
Analysis of the failure of a metal structure or part usually requires identification of the type of failure. Failure can occur by one or more of several mechanisms, including surface damage (such as corrosion or wear), elastic or plastic distortion, and fracture. This leads to a wide range of failures, including fatigue failure, distortion failure, wear failure, corrosion failure, stress-corrosion cracking, liquid-metal embrittlement, hydrogen-damage failure, corrosion-fatigue failure, and elevated-temperature failure. This article describes the classification of fractures on a macroscopic scale as ductile fractures, brittle fractures, fatigue fractures, and fractures resulting from the combined effects of stress and environment.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003805
EISBN: 978-1-62708-183-2
...) applies, although it is rare in atmospheric corrosion. The case of n = 1 2 is often encountered in high-temperature oxidation, suggesting that the corrosion rate is determined by mass transport through the corrosion product. Actually, cases of n < 1 2 exist in mild atmospheres...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003619
EISBN: 978-1-62708-182-5
..., such as molten metal attack and hot corrosion, are less specific. Detailed descriptions of such modes of attack are given elsewhere is this Volume and in Ref 1 and 2 . The most common high-temperature degradation mode is oxidation, and the protection against oxidation, in general, is given by the formation...
Abstract
The article provides an introduction on the importance of alloying elements on corrosion behavior of nickel alloys and describes the applications of heat-resistant alloys to resist corrosion. It focuses on the metallurgical effects, mainly the effect of internal factors, including chemical composition and microstructure of the alloy, and the external factors, including electrolyte composition, temperature, and electrode potential, on the corrosion behavior of corrosion-resistant alloys. The article also discusses the implication of changing the alloy microstructure by second-phase precipitation, cold working, and cast and wrought forms on the corrosion behavior of high-nickel alloys.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures...
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003671
EISBN: 978-1-62708-182-5
... Abstract This article provides information on the thermodynamics and kinetics of high-temperature corrosion. The thermodynamics of high-temperature corrosion reactions reveals what reactions are possible under certain conditions and kinetics explains how fast these possible reactions...
Abstract
This article provides information on the thermodynamics and kinetics of high-temperature corrosion. The thermodynamics of high-temperature corrosion reactions reveals what reactions are possible under certain conditions and kinetics explains how fast these possible reactions will proceed. The article describes the diffusion process that plays a key role in oxidation and other gaseous reactions with metals. It discusses the development of stress in oxide layers. The article presents the sample preparation methods for high-temperature testing, and expounds the measurement methods of high-temperature degradation. It reviews a number of potential processes, which are responsible for high-temperature corrosion. The article details a wide range of coatings and coating processes for protecting components in a variety of operating conditions. It also discusses the testing methods used for materials at high temperatures, including furnace tests, burner rig testing, and thermogravimetric analysis, and the test methods conducted at high temperature and high pressure.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004157
EISBN: 978-1-62708-184-9
... tube bundle, which can vary from 650 to 900 °C (1200 to 1650 °F). As a result, the tube shields typically suffer chloride attack and sulfidation attack. Furthermore, the shields are typically attached to the tube by mechanical clamps and fillet welds. In addition to high-temperature corrosion...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006073
EISBN: 978-1-62708-172-6
... and their derivatives (mineral spirits, lower alcohols, glycols, etc.) 3E: Chemical atmospheric exposure, severe. Including oxidizing chemicals, strong solvents, extreme pHs, or combinations of these with high temperatures For the most part, these environmental descriptions are somewhat similar to the extent...
Abstract
This article discusses the environmental influences on protective coating films that can result in deterioration. These environmental factors can be classified into four groups: (1) energy: solar, heat; (2) permeation: moisture, solvent, chemical, and gas; (3) stress: drying and curing-internal stress, and vibration-external stress; and (4) biological influences such as microbiological, mildew, and marine fouling.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005733
EISBN: 978-1-62708-171-9
... resistance against high-temperature water vapor attack, low elastic modulus values (below 100 GPa, or 14.5 × 10 6 psi, i.e., stress compliance), and crack-healing capabilities at high temperatures ( Ref 5 , 12 , 13 , 14 , 15 , 16 , 17 ). New Materials for EBCs Rare-Earth Silicates Rare-earth...
Abstract
This article presents a summary of the current and new materials and processing techniques for thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). Different thermal spraying and postspraying processing techniques are required to produce coatings with optimal performance. For TBCs and EBCs, the elastic modulus, mechanical strength, and toughness values are extremely important in predicting failure behavior under stress and strain conditions, mainly for modeling purposes. Sand and/or volcanic ash particles are molten in the hot zones of turbines and deposited over TBCs and EBCs. They form calcium-magnesium-aluminosilicate (CMAS) glassy deposits.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003028
EISBN: 978-1-62708-200-6
..., stabilizers, pigments, and their carrier systems, that can be susceptible to microbiologic attack. Additives that are not distributed evenly will provide areas of preferential growth for fungi or bacteria. The most favorable conditions for growth are high temperature and humidity. The growth of fungi...
Abstract
This article describes weathering and environmental factors that contribute to degradation in plastics, including temperature variations, moisture, sunlight, oxidation, microbiologic attack, and other environmental elements. It presents a general overview of aging factors, their effects on plastic materials, and the accelerated test methods that can be used to estimate the reaction of a plastic component during actual use. The article focuses on the determination of service temperature as it indicates the ability of a material to retain a certain property, when exposed to elevated temperatures for an extended period of time. It concludes by describing various degradation processes, namely, thermal degradation, thermal oxidative degradation, photooxidative degradation, environmental corrosion, and chemical corrosion and discussing the ways of detecting these degradation processes.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001471
EISBN: 978-1-62708-173-3
... identified as potential initiation sites for hydrogen-promoted underbead cracking in high-strength steel. Microstructural Gradients On a fine scale, microstructural gradients exist within the heat-affected zone due to different time-temperature cycles experienced by each element of material. Gradients...
Abstract
Weldments exhibit special microstructural features that need to be recognized and understood in order to predict acceptable corrosion service life of welded structures. This article describes some of the general characteristics associated with the corrosion of weldments. It emphasizes the role of macrocompositional and microcompositional variations to bring out differences that need to be realized in comparing corrosion of weldments to that of wrought materials. The article concludes with a discussion on important welding practices used to minimize corrosion in weldments.
1