1-20 of 732

Search Results for high-strength wrought aluminum products

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006545
EISBN: 978-1-62708-210-5
... on statically loaded precracked samples, and tests using slowly straining samples. The article describes SCC susceptibility and ratings of SCC resistance for high-strength wrought aluminum products, such as 2xxx, 5xxx, and 7xxx series alloys, aluminum-lithium alloys, and 7xxx alloys containing copper...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002406
EISBN: 978-1-62708-193-1
... fracture resistance fracture toughness high-strength wrought aluminum products microstructure precipitate shearing S-N fatigue strain control fatigue stress-corrosion cracking ratings stress-corrosion cracking resistance tensile properties thermal treatment Though virtually all design...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003121
EISBN: 978-1-62708-199-3
..., close dimensional tolerances, and consistently controlled mechanical properties in the upper range of existing high-strength capabilities for selected alloys and tempers. More detailed information on aluminum castings is included in the article “Aluminum Foundry Products” in this Section. Powder...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006594
EISBN: 978-1-62708-210-5
... aluminum-copper alloys, as little as 0.5% Mg is effective in changing aging characteristics. In wrought products, the effect of magnesium additions on strength also is improved by cold working prior to aging. Cold working also influences the strength of naturally aged aluminum-copper alloys...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... extruded products. The low density combined with high strength have made aluminum alloys the standard material for applications such as aircraft, where specific strength (strength-to-weight ratio) is a major design consideration. Because of their corrosion resistance, moderate strength, and good ductility...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003167
EISBN: 978-1-62708-199-3
... mechanical properties of aluminum-base bearing alloys Table 9 Typical room-temperature mechanical properties of aluminum-base bearing alloys Alloy family Product form Compressive yield strength (a) Ultimate tensile strength Hardness, HB MPa ksi MPa ksi High-tin alloys Steel backed...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006707
EISBN: 978-1-62708-210-5
... strengths among non-heat-treated aluminum products, with tensile strengths ranging from 124 to 434 MPa (18 to 63 ksi). The 5 xxx -series alloys also have relatively high ductility, usually in excess of 25%. They have very high toughness, even at cryogenic temperatures to near absolute zero. They are readily...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003124
EISBN: 978-1-62708-199-3
... high-strength alloys exceed 550 MPa (80 ksi). When the magnitude of this difference (an increase of over 5000%) is considered, this practical, everyday accomplishment, which is just one aspect of the physical metallurgy of aluminum, is truly remarkable. Higher strengths, up to a yield strength of 690...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006066
EISBN: 978-1-62708-175-7
... Abstract Stainless steels are highly alloyed materials in comparison to most other popular powder metallurgy (PM) materials, such as low-alloy steels, copper alloys, and aluminum alloys. This article provides an overview of the history of PM stainless steels. aluminum alloys copper...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001057
EISBN: 978-1-62708-162-7
... and sintered aluminum P/M products can be found in the Appendix to the article “High-Strength Aluminum P/M Alloys” in this Volume. For more demanding applications, such as aerospace parts or components requiring enhanced resistance to stress-corrosion cracking, rapidly solidified or mechanically attrited...
Book Chapter

By Alexey Sverdlin, Steven Lampman
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... ambient temperature. Precipitation-Hardening Alloys of Al-Cu-Mg Additions of magnesium to aluminum-copper alloys accelerate and intensify natural age hardening. These were the first heat treatable high-strength aluminum alloys, and they have continued through the years to be among the most popular...
Book Chapter

By Sabit Ali
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006281
EISBN: 978-1-62708-169-6
..., nickel-aluminum bronzes, silicon bronzes, and beryllium bronzes. This article briefly discusses the types, hardening mechanisms, heat treatment processes, applications, and mechanical properties of these bronzes and high-copper alloys. beryllium-copper alloys cast aluminum bronze cast beryllium...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006482
EISBN: 978-1-62708-207-5
...: First digit: Principal alloying constituent(s) Second and third digits: Purity level for cast aluminum or a unique designation for alloys Fourth digit: Designation for cast product types as a casting (0) or ingot (1, 2) Like the wrought system, the first digit defines the major alloying...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003814
EISBN: 978-1-62708-183-2
... in the pH range of 4.5 to 8.5. Foods and beverages outside this range are typically packaged in polymer-coated aluminum containers. There are two types of wrought aluminum alloy: those that can be heat treated to increase their strengths, and those that cannot. The wrought alloys are also categorized...
Book Chapter

By Rodney R. Boyer
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003141
EISBN: 978-1-62708-199-3
... inclusions,” they often are of higher density than is normal for the alloy. Type II imperfections, sometimes called “high-aluminum defects,” are abnormally stabilized α-phase areas that may extend across several β grains. Type II imperfections are caused by segregation of metallic α stabilizers...
Book Chapter

Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006251
EISBN: 978-1-62708-169-6
...) as the American National Standard Alloy and Temper Designation Systems for Aluminum (ANSI H35.1) ( Ref 1 ). The alloy-temper system of the Aluminum Association is based on alloy designations (which are grouped as wrought, cast, or foundry ingot product forms) followed by a hyphen with a temper code that defines...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006726
EISBN: 978-1-62708-210-5
... hardening tensile strength wrought heat treatable aluminum alloys COMMERCIAL 7 XXX SERIES ALLOYS are capable of being heat treated to exceptionally high strength levels (>600 MPa, or 87 ksi, yield strength). They are commonly produced in the form of sheet, plate, extrusions, rod, bar...
Book Chapter

By Jack W. Bray
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001059
EISBN: 978-1-62708-162-7
..., are wrought products and are briefly reviewed in this section. In addition to production method and product configuration, wrought aluminum products also may be classified into heat-treatable and non-heat-treatable alloys. Initial strength of non-heat-treatable (1 xxx, 3 xxx, 4 xxx, and 5 xxx ) alloys...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006689
EISBN: 978-1-62708-210-5
.... , Aluminum Mill and Engineered Wrought Products , Properties and Selection: Nonferrous Alloys and Special-Purpose Materials , Vol 1 , ASM Handbook , ASM International , 1990 , p 54 ...
Book Chapter

By J.G. Kaufman
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003815
EISBN: 978-1-62708-183-2
... product. 2<italic>xxx</italic> Wrought Alloys Containing Lithium Lithium additions decrease the density and increase the elastic modulus of aluminum alloys, making aluminum-lithium alloys good candidates for replacing the existing high-strength alloys, primarily in aerospace applications. One...