Skip Nav Destination
Close Modal
Search Results for
high-strength stainless steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1452 Search Results for
high-strength stainless steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2000
Fig. 13 Tensile, yield, and rupture strengths of several stainless steels and higher-nickel austenitic alloys Alloy Annealed by rapid cooling from 304 1065 °C (1950 °F) 316 1065 °C (1950 °F) 347 1065°C (1950°F) 309 1095 °C (2000 °F) 310 1095 °C (2000 °F) 321
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004146
EISBN: 978-1-62708-184-9
... radiation fields. The article explains the primary side intergranular stress corrosion cracking (IGSCC) in different materials, namely, nickel-base alloys, high-strength nickel-base alloys, low-strength austenitic stainless steels, and high-strength stainless steels. The secondary side corrosion in steam...
Abstract
This article discusses the main materials and water chemistry characteristics of the primary and secondary water circuits of a pressurized water reactor (PWR). It reviews the corrosion issues of PWR materials and the influence of corrosion and fouling on primary and secondary circuit radiation fields. The article explains the primary side intergranular stress corrosion cracking (IGSCC) in different materials, namely, nickel-base alloys, high-strength nickel-base alloys, low-strength austenitic stainless steels, and high-strength stainless steels. The secondary side corrosion in steam generator including denting, pitting, intergranular attack and IGSCC is also discussed. The article examines laboratory studies that have resulted in models and computer codes for evaluating and predicting intergranular corrosion, and considers the remedial actions for preventing or arresting intergranular corrosion. It concludes with information on the external bolting corrosion in nuclear power reactors.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005886
EISBN: 978-1-62708-167-2
... materials and components. Using high-strength stainless steel materials for fabrications is one approach for reducing the weight of systems, such as in future automotive structures. Bulk heat ent of nickel-base superalloys is also performed by induction heating methods. Similar to stainless steels...
Abstract
This article discusses special considerations relative to induction heating of stainless steels and nickel-base superalloys. It focuses on the various industrial and high-temperature applications of induction heating to stainless steel and superalloy components, namely, primary melting processes, preheating for primary and secondary forming processes, heat treatments, brazing, and thermal processing for fusion welds. The article also provides information on computational modeling of induction heating processes for super alloys and stainless steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006097
EISBN: 978-1-62708-175-7
...). Such operations work better with a high-AD stainless steel powder, because the high AD leads to higher green and sintered densities. Achievement of a high green density alleviates any concerns over inadequate green strength. The flow rate of the powder is influenced by the particle morphology as well...
Abstract
This article provides an overview of the compaction of metal powder in a rigid die and reviews the compaction characteristics of stainless steel powders, including green density, compressibility, green strength, apparent density, flow rate, and sintered density. It describes the influence of compaction characteristics of stainless steel powders in tool materials selection, lubrication, annealing, double pressing/double sintering, and warm compaction.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003119
EISBN: 978-1-62708-199-3
... for high-strength applications where shape complexity is a factor. Stainless steel powders that are most commonly injection molded include austenitic, duplex, and precipitation-hardening grades. Tables 4 and 5 list compositions and properties of standardized injection-molded stainless steels...
Abstract
Stainless steel powder metallurgy (P/M) parts represent an important and growing segment of the P/M industry. This article describes the processing, properties, and composition of medium-density and high-density P/M stainless steels. Medium-density materials are processed by pressing and sintering prealloyed stainless powders. High-density materials are produced by hot isostatic pressing, cold isostatic pressing followed by extrusion, or metal injection molding. The comparison of mechanical properties of these P/M stainless steels is represented graphically. The article contains a table that lists the effect of iron, carbon, nitrogen, oxygen, and density on the corrosion resistance of the sintered austenitic stainless steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006066
EISBN: 978-1-62708-175-7
... of mechanical properties when thermomechanically processed. In PM, cold working is not an option and the strength of a part is therefore limited to its as-sintered strength. Though the high-temperature hydrogen sintering of PM austenitic stainless steels is very desirable with regard to corrosion resistance...
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001048
EISBN: 978-1-62708-161-0
... Abstract Stainless steels are widely used at elevated temperatures when carbon and low-alloy steels do not provide adequate corrosion resistance and/or sufficient strength at these temperatures. This article deals with the wrought stainless steels used for high temperature applications...
Abstract
Stainless steels are widely used at elevated temperatures when carbon and low-alloy steels do not provide adequate corrosion resistance and/or sufficient strength at these temperatures. This article deals with the wrought stainless steels used for high temperature applications. It gives some typical compositions of wrought heat-resistant stainless steels, which are grouped into ferritic, martensitic, austenitic, and precipitation-hardening (PH) grades. Quenched and tempered martensitic stainless steels are essentially martensitic and harden when air cooled from the austenitizing temperature. These alloys offer good combinations of mechanical properties. The article focuses on mechanical property considerations and corrosion resistance considerations of stainless steels. The corrosion and oxidation resistance of wrought stainless steels is similar to that of cast stainless steels with comparable compositions.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001046
EISBN: 978-1-62708-161-0
... heat treatments, sometimes with a subzero treatment. In most cases, these stainless steels attain high strength by precipitation hardening of the martensitic structure. Standard Types A list of standard types of stainless steels, similar to those originally published by the American Iron...
Abstract
This article discusses the composition, characteristics, and properties of the five groups of wrought stainless steels: martensitic stainless steels, ferritic stainless steels, austenitic stainless steels, duplex stainless steels, and precipitation-hardening stainless steels. The selection of stainless steels may be based on corrosion resistance, fabrication characteristics, availability, mechanical properties in specific temperature ranges and product cost. The fabrication characteristics of stainless steels include formability, forgeability, machinability, and weldability. The product forms of wrought stainless steels are plate, sheet, strip, foil, bar, wire, semifinished products, pipes, tubes, and tubing. The article describes tensile properties, elevated-temperature properties, subzero-temperature properties, physical properties, corrosion properties, and fatigue strength of stainless steels. It characterizes the experience of a few industrial sectors according to the corrosion problems most frequently encountered and suggests appropriate grade selections. Corrosion testing, surface finishing, mill finishes, and interim surface protection of stainless steels are also discussed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001464
EISBN: 978-1-62708-173-3
... moderate or low strengths and respond mildly to a lowering of temperature ( Ref 1 , 2 ). Nine-percent nickel (Fe-9Ni) starts with a strength that is high at room temperature and rises from that point ( Ref 1 , 2 ). High-manganese steels, such as Fe-22Mn, and 21Cr-6Ni-9Mn stainless steel at 4 K approach...
Abstract
Cryogenic temperatures cause many structural alloys to become brittle, which is an unacceptable condition in most structural applications and is rectified by optimizing the weld composition. Although nonmatching weld compositions are most appropriate, differences between the welds and parent material in terms of thermal contraction, corrosion, and other factors must be considered. This article discusses these differences and describes the effect of these factors on the choice of the weld filler metal. It also provides a detailed discussion on the effects of cryogenic services on mechanical properties of the parent metal.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
.... On the whole, stainless steels have fairly high strength and relatively good ductility. Chemistry and Grades Stainless steels are composed of 55% to 90% Fe and 10 to 28% Cr. Nickel is often added to the alloy ranging from 0 to 22%. Because of the high cost of nickel such steels are more expensive...
Abstract
The warm and hot working of metals provide the ability to shape important materials into component shapes that are useful in a variety of applications requiring strength, toughness, and ductility. This article focuses on a variety of metals that can be hot or warm worked, and describes the characteristics and processing considerations of each metal. It discusses forging because it is a versatile metalworking process and performed at cold, warm, and hot working temperatures. The article also presents the applications of steels, stainless steels, aluminum alloys, titanium alloys, superalloys, and copper alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001412
EISBN: 978-1-62708-173-3
... to that of the hardenable 400 series stainless steels and yield strengths of 585 to 1795 MPa (85 to 260 ksi). These high strengths are obtained by precipitation hardening a martensitic or austenitic matrix with one or more of the following elements: copper, aluminum, titanium, niobium (columbium), and molybdenum...
Abstract
This article commences with a brief description of the solidification characteristics and microstructures of martensitic precipitation hardening (PH) stainless steels. It reviews the welding parameters for types 17-4PH, 15-5PH, PH13-8 Mo, Custom 450, and Custom 455. The article describes the microstructural evolution and weld parameters associated with semiaustenitic PH steels. It discusses the weldability and welding recommendations for A-286 and JBK-75 austenitic PH stainless steels. The article also presents tables that list properties and heat treatments for the PH stainless steels.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003117
EISBN: 978-1-62708-199-3
..., and that it provides strength in the high-temperature applications of stainless steels. In all other applications, carbon is detrimental to corrosion resistance through its reaction with chromium. In the ferritic grades, carbon is also extremely detrimental to toughness. Nitrogen Nitrogen is beneficial...
Abstract
Selection of appropriate grades of steel will enable the steel to perform for very long times with minimal corrosion, but an inadequate grade can corrode and perforate more rapidly than a plain carbon steel will fail by uniform corrosion. This article describes the effect of chemical composition, heat treatment, welding, and surface condition on corrosion resistance of stainless steels. It discusses the various forms of corrosion and the important factors to be considered when selecting suitable stainless steel for application in specific corrosive environments.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
... Steels Austenitic stainless steels constitute the largest stainless family in terms of number of alloys and use. They are essentially nonmagnetic in the annealed condition and can be hardened only by cold working. They usually possess excellent cryogenic properties and good high-temperature strength...
Abstract
Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels, martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties of stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article explains the process features of implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM F1314, ASTM F1586, ASTM F2229, and ASTM F2581 stainless steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006068
EISBN: 978-1-62708-175-7
... good deformability, as indicated by low hardness and/or low yield strength. In comparison to plain iron powder, stainless steel powders require substantially higher compacting pressures because of their high alloy content, which increases their hardness and work-hardening rates. With these properties...
Abstract
This article provides information on the process details that differ from general water atomization of metals as they relate to basic and engineering properties that are specific to stainless steel powders. The discussion focuses on the compacting-grade stainless steel powders. The process details include raw materials, melting method, and control of physical and chemical powder characteristics. The article describes the gas atomization of stainless steel powders and processes that are done after water atomization: drying, screening, annealing, and lubricating. It also discusses the two types of quality assurance testing measures for powder metallurgy stainless steels: tests for powder contamination and tests of chemical and physical properties.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002405
EISBN: 978-1-62708-193-1
... to production and welding metallurgy, as well as corrosion research of the duplex stainless steels. Therefore, duplex stainless steels are today established in a wide product range. In most cases duplex stainless steels are selected because they combine high strength and excellent corrosion resistance...
Abstract
This article reviews the influence of local strains and corrosion fatigue on the initiation of fatigue cracks in duplex stainless steels. It provides useful information on fatigue crack growth, fatigue strength, and fracture toughness of duplex stainless steels. The article discusses the fatigue and fracture behavior of duplex stainless steels during stress-corrosion cracking. It details the elevated-temperature properties of duplex stainless steels, such as creep-fatigue behavior and thermal cycling properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
... carbon steel. However, austenitic stainless steels exhibit much greater spreads between yield and ultimate strengths and much higher work-hardening rates—particularly the leaner alloys such as types 302 and 304. The machinability of duplex stainless steels is limited by their high annealed strength level...
Abstract
Fabrication of wrought stainless steels requires use of greater power, more frequent repair or replacement of processing equipment, and application of procedures to minimize or correct surface contamination because of its greater strength, hardness, ductility, work hardenability and corrosion resistance. This article provides a detailed account of such difficulties encountered in the fabrication of wrought stainless steel by forming, forging, cold working, machining, heat treating, and joining processes. Stainless steels are subjected to various heat treatments such as annealing, hardening, and stress relieving. Stainless steels are commonly joined by welding, brazing, and soldering. The article lists the procedures and precautions that should be instituted during welding to ensure optimum corrosion resistance and mechanical properties in the completed assembly.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006098
EISBN: 978-1-62708-175-7
... densities than the austenitic grades. By using high-temperature hydrogen sintering (typically 1290 to 1345 °C, or 2350 to 2450 °F) in commercial sintering furnaces (pusher, ceramic belt, walking beam, and vacuum), PM ferritic stainless steels can be sintered to a sintered density of 7.20 g/cm 3 or higher...
Abstract
This article describes the physical properties of powder metallurgy (PM) stainless steels. These include thermal diffusivity, conductivity, thermal expansion coefficient, Poisson's ratio, and elastic modulus. The article contains a table that lists the characteristics of various grades of PM stainless steels. It discusses the applications of various PM stainless steels such as rearview mirror brackets, anti-lock brake system sensor rings, and automotive exhaust flanges and sensor bosses.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003180
EISBN: 978-1-62708-199-3
... require considerably less power to form but fail at comparatively low elongation levels. Power Requirements Power requirements for forming of stainless steel, because of the high yield strength, are greater than for low-carbon steel; generally, twice as much power is used in forming stainless...
Abstract
Characteristics of stainless steel that affect its formability include yield strength, tensile strength, and ductility, in addition to the effect of work hardening on these properties. This article discusses the forming process of stainless steel, heat-resistant alloys and refractory metals, detailing the major aspects of forming, including formability, lubrication, and forming methods and tools. The effect of factors such as alloy condition, cold reduction, forming direction (in the case of heat-resistant alloys) and temperature (in the case of refractory metals) on formability is also discussed.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006120
EISBN: 978-1-62708-175-7
... and most other body-centered cubic iron-base alloys. Martensitic stainless steels derive their strength from their severely distorted and strained lattice structure. The PM versions of low-chromium martensitic grades (such as 410 and 420) offer remarkably high hardness in the as-sintered condition...
Abstract
This article describes the factors influencing the room-temperature and elevated-temperature mechanical properties of powder metallurgy (PM) stainless steels. It contains tables that list the mechanical property specifications of the Metal Powder Industries Federation (MPIF) Standard 35.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002404
EISBN: 978-1-62708-193-1
... at elevated temperatures. In addition, AISI type 300-series stainless steels are the most widely used structural alloys for cryogenic applications, because they exhibit high strength, ductility, and fracture toughness properties as well as low thermal expansion and low magnetic permeability. Extensive...
Abstract
This article describes the fracture toughness behavior of austenitic stainless steels and their welds at ambient, elevated, and cryogenic temperatures. Minimum expected toughness values are provided for use in fracture mechanics evaluations. The article explains the effect of crack orientation, strain rate, thermal aging, and neutron irradiation on base metal and weld toughness. It discusses the effect of cold-work-induced strengthening on fracture toughness. The article examines the fracture toughness behavior of aged base metal and welding-induced heat-affected zones. It concludes with a discussion on the Charpy energy correlations for aged stainless steels.
1