Skip Nav Destination
Close Modal
Search Results for
high-strength premium casting alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 145 Search Results for
high-strength premium casting alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
... specimen design ALUMINUM ALLOYS 201.0 and A201.0 are structural casting alloys available as sand, permanent mold and investment castings. They are used in structural casting members, applications requiring high tensile and yield strengths with moderate elongation, and where high strength and energy...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006555
EISBN: 978-1-62708-210-5
... Casting Alloy, Alloy Digest: Data on Worldwide Metals and Alloys , Filing code Al–244 , February 1983 The full potential of Aluminum A206.0 can best be realized in castings that are produced using premium quality foundry techniques. Like the other high-strength 2xx casting alloys ( Table 4...
Abstract
The 206.0, A206.0, and B206.0 alloys (aluminum alloys 2xxx) are structural castings in the heat-treated temper for automotive and aerospace applications where high tensile and yield strengths with moderate elongations are needed. This datasheet provides information on key alloy metallurgy and fabrication characteristics of these 2xxx series alloys, as well as the effects of processing on their typical physical and mechanical properties.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006570
EISBN: 978-1-62708-210-5
... 0.15 Al bal Abstract Abstract This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of Al-Si-Mg high-strength premium casting alloy 359.0. References...
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006566
EISBN: 978-1-62708-210-5
... of premium castings. Alloy 354.0 also has good high-temperature strength ( Tables 7 – 9 ). These alloys generally have excellent resistance to corrosion and stress corrosion. However, some stress corrosion was noted for the highest strength (T62) condition in sea water. This should not be a problem in less...
Abstract
Alloy 354.0 was designed especially for premium engineered casting applications requiring high-tensile properties and elongation. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of this alloy.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... high quality for these alloys. The 2 xx.x alloys also have the highest strengths and hardnesses of all casting alloys at elevated temperatures (to 300 °C, or 600 °F), and this factor accounts for their use in some applications. Alloys 222.0, 224.0, 238.0, 240.0, 242.0, and 243.0, some with higher...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
...) Premium casting alloys (high strength and toughness alloys 201.0 T6(S) 2.80 2796 0.101 570–650 1000–1200 27–32 0.29 19.3 (10.7) 24.7 (13.7) T7(P) 2.80 2796 0.101 570–650 1000–1200 32–34 0.29 19.3 (10.7) 24.7 (13.7) 206.0 T4(S) 2.8 2796 0.101 570–650 1000–1200 30 0.29...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection. Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, and investment casting. In addition, the article discusses factors affecting the mechanical and physical properties, microstructural features that affect mechanical properties, the effects of alloying, and major applications of aluminum casting alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006457
EISBN: 978-1-62708-210-5
... ( K Ic ) vs. tensile yield strength for selected aluminum alloy castings. SC, sand cast alloy; PE, premium engineered alloy Fig. 20 Fracture toughness vs. yield strength for high-strength aluminum alloy plate (longitudinal-transverse orientation). Source: Ref 43 Fig. 21 Critical...
Abstract
This article discusses the concepts underlying linear elastic fracture mechanics and elastic-plastic fracture mechanics as well as their importance in characterizing the fracture behavior of the high-strength aluminum alloys. It describes the three methods used for analyzing elastic-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
... of hypereutectic silicon alloys are often intentionally neglected. The movement toward higher-integrity die castings has brought into focus the importance of the same melt-quality parameters established and used in the gravity casting of aluminum alloys. In high-production die casting operations...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article provides an overview of the common methods of aluminum shape casting. These include gravity casting, die casting, sand casting, lost foam casting, shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
... criteria. Their light weight minimizes loads in reciprocating applications, and heat dissipation improves bearing life. Premium Engineered Alloys There is a specific class of aluminum casting alloys with higher-purity compositions designed to provide high strength and high ductility...
Abstract
This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions of some alloys. The article provides a summary of aluminum casting alloy designations of The Aluminum Association, the Unified Numbering System, and specific alloys considered premium strength by definition and by ASTM International and Aerospace Material Specifications. A distillation of data from published industry sources is given for a wide range of the properties and performance characteristics for topics such as: physical and thermophysical properties, typical and minimum mechanical properties, fatigue resistance, fracture resistance, and subcritical crack growth.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002407
EISBN: 978-1-62708-193-1
...) Per AMS 4242 High-strength (ultimate tensile strength of 345 MPa, or 50 ksi) alloy A357-T6 castings were in production in the United States by the late 1960s. The alloy was used in the F-5 Northrop fighter wing pylon, which is still remarkable in size, complexity, uniformity of mechanical...
Abstract
This article reviews the fatigue and fracture properties of aluminum alloy castings, specifically alloys A356 and A357/D357 (all-T6) and alloy A201-T7, from the perspective of both design and manufacturing considerations. In addition, it provides an overview of the roles played by microstructure, manufacturing processes, test conditions, and casting design in determining the fatigue and fracture properties of aluminum casting alloys.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... Machinery Instrument cases Marine components Pistol frames Food and beverage processing Decorative parts Reflectors Optical systems High-strength alloys include compositions designed to provide high strength and ductility and, in the case of premium engineered castings, also imply...
Abstract
This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys bearings. A table lists selected applications for aluminum casting alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006567
EISBN: 978-1-62708-210-5
... indicate some attack of this alloy in all conditions; consequently, surface protection should be provided in such environments. Alloy C355.0 is used in premium, high-strength applications where castings are usually heat treated for maximum strength ( Tables 5 and 6 ). Sand castings include printing...
Abstract
Alloys 355.0 and C355.0 are high-strength alloys used in various applications where castings are usually heat treated for maximum strength. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics, and application characteristics of these 3xxx series alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006569
EISBN: 978-1-62708-210-5
... and critical applications requiring premium-quality castings. Toughness and strength are not as good as alloy 206.0 ( Fig. 2 ), but the alloys provide high strength with fairly good ductility ( Tables 7 and 8 ). Aluminum 357.0 exhibits good general corrosion resistance under ordinary atmospheric, marine...
Abstract
The family of type 357 alloys contain the highest magnesium levels and are used where high strength is required. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
... temperature delineate the minimum temperature below which sludging can commonly be expected in high-pressure die casting. Lead Lead is commonly used in aluminum casting alloys at greater than 0.1% for improved machinability. Magnesium Magnesium is the basis for strength and hardness development...
Abstract
This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes the various means of structural control, namely, chemistry control, control of element ratios based on the stoichiometry of intermetallic phases, and control of solidification conditions. The article discusses the modification and grain refinement of aluminum-silicon alloys by the use of modifiers and refiners to influence eutectic and hypereutectic structures in aluminum-silicon alloys. It provides information on foundry alloys for specific casting applications. The article concludes with a discussion on the heat treatment practices and properties of aluminum casting alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006572
EISBN: 978-1-62708-210-5
... cracking. It can be used without corrosion protection. Alloy 362.0 has higher magnesium levels than 367.0 and 368.0 for higher strength. The high silicon and magnesium provide wear resistance and high strength, particularly after T5 and T6 heat treatment. Die cast engine blocks, gear cases, and similar key...
Abstract
Alloy 362.0, low-iron premium die-casting alloy, is made from recycled secondary metal scrap and was developed to have equivalent or better mechanical properties than Silafont-36 and/or Aural-2. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications of this alloy.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... Specification QQ-A-601e, Aluminum Alloy Sand Castings; and Military Specification MIL-A-21180C, Aluminum Alloy Castings, High Strength. Unless otherwise specified, the average values of tensile strength, yield strength, and elongation for specimens cut from castings should not be less than 75% of the tensile...
Abstract
This article is a comprehensive collection of tables and curves that present data on the properties of aluminum castings. Data are presented to explain the physical properties such as ratings of castability, corrosion resistance, machinablity, and weldability for aluminum casting alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005974
EISBN: 978-1-62708-168-9
... Y. , and Tubakino H. , Effect of Silicon Content on Tempered Hardness, High Temperature Strength and Toughness of Hot Working Tool Steels , Tetsu-to-Hagane (J. Iron Steel Inst. Jpn.) , Vol 89 , ( No. 6 ), June 2003 , p 673 – 679 10.2355/tetsutohagane1955.89.6_673 12...
Abstract
This article focuses on heat treating of the most important H-series and low-alloy hot-work tool steels, namely, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and surface hardening. It describes the heat-treating procedure for hot-work tools using examples. The article provides information on the North American Die-Casting Association's requirements for steel grades and heat treatment of dies made of hot-work tool steels. It also describes the chemical compositions and mechanical and metallurgical properties of hot-work tool steels.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006568
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys 356.0 and A356.0. Figures illustrate the variation of Charpy impact energy in A356-T6 castings...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys 356.0 and A356.0. Figures illustrate the variation of Charpy impact energy in A356-T6 castings as a function of solution time; and room-temperature aging characteristics for aluminum alloy 356.0-T4. Growth and hardness curves for aluminum alloy 356.0-T4 are also presented.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002190
EISBN: 978-1-62708-188-7
...” in this Volume. (e) Any premium high-speed steel (T15, M33, M41-47, or S9, S10, S11, S12). Source: Metcut Research Associates Inc. Turning niobium and molybdenum alloys (wrought, cast, and P/M) with cutoff and form tools Table 2 Turning niobium and molybdenum alloys (wrought, cast, and P/M...
Abstract
This article describes various machining techniques of refractory metals, namely, niobium, molybdenum, tantalum, and tungsten. These include turning, boring, trepanning, reaming, milling, tapping, drilling, and sawing. Parameters for the machining of the refractory metals are also tabulated. In addition, the article provides information on cutting fluids and tools that are used in machining of the refractory metals as well as on the safety precautions to be followed in the machining process.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
... of a shell mold for an air-cooled turbine blade casting. Source: Ref 5 Abstract Abstract The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime...
Abstract
The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength is affected by the condition of the grain boundaries and, in particular, the grain-boundary carbide morphology and distribution. Vacuum induction melting offers more control over alloy composition and homogeneity than all other vacuum melting processes. The primary purification reaction occurring in the process is the removal of melt contained oxygen by means of a reaction with carbon to form carbon monoxide. A number of casting processes can provide near-net shape superalloy cast parts, but essentially all components are produced by investment casting. The solidification of investment cast superalloy components is precisely controlled so that the microstructure, which ultimately determines mechanical properties, remains consistent. Heat treating cast superalloys involves homogenization and solution heat treatments or aging heat treatments.