Skip Nav Destination
Close Modal
Search Results for
high-strength premium casting alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 154 Search Results for
high-strength premium casting alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
... ALUMINUM ALLOYS 201.0 and A201.0 are structural casting alloys available as sand, permanent mold and investment castings. They are used in structural casting members, applications requiring high tensile and yield strengths with moderate elongation, and where high strength and energy-absorption capacity...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006555
EISBN: 978-1-62708-210-5
... of Aluminum A206.0 can best be realized in castings that are produced using premium quality foundry techniques. Like the other high-strength 2xx casting alloys ( Table 4 ), outstanding ductility, toughness, and tensile properties are obtained by restricting impurity element concentrations. The alloy...
Abstract
The 206.0, A206.0, and B206.0 alloys (aluminum alloys 2xxx) are structural castings in the heat-treated temper for automotive and aerospace applications where high tensile and yield strengths with moderate elongations are needed. This datasheet provides information on key alloy metallurgy and fabrication characteristics of these 2xxx series alloys, as well as the effects of processing on their typical physical and mechanical properties.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006570
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of Al-Si-Mg high-strength premium casting alloy 359.0. aluminum alloy 359.0 aluminum-silicon...
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006566
EISBN: 978-1-62708-210-5
... lists minimum properties of premium castings. Alloy 354.0 also has good high-temperature strength ( Tables 7 – 9 ). These alloys generally have excellent resistance to corrosion and stress corrosion. However, some stress corrosion was noted for the highest strength (T62) condition in sea water...
Abstract
Alloy 354.0 was designed especially for premium engineered casting applications requiring high-tensile properties and elongation. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of this alloy.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
... high quality for these alloys. The 2 xx.x alloys also have the highest strengths and hardnesses of all casting alloys at elevated temperatures (to 300 °C, or 600 °F), and this factor accounts for their use in some applications. Alloys 222.0, 224.0, 238.0, 240.0, 242.0, and 243.0, some with higher...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... Pistol frames Food and beverage processing Decorative parts Reflectors Optical systems High-Strength Casting Alloys High-strength alloys include compositions designed to provide high strength and ductility and, in the case of premium engineered castings, also imply high levels...
Abstract
This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys bearings. A table lists selected applications for aluminum casting alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006572
EISBN: 978-1-62708-210-5
... and mechanical properties, and applications of this alloy. aluminum alloy 362.0 low-iron premium die-casting alloys mechanical properties metal scrap physical properties Alloy 362.0 (UNS A03620) is a high-performance, low-iron, die-casting alloy that relies on strontium for die-soldering...
Abstract
Alloy 362.0, low-iron premium die-casting alloy, is made from recycled secondary metal scrap and was developed to have equivalent or better mechanical properties than Silafont-36 and/or Aural-2. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications of this alloy.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006457
EISBN: 978-1-62708-210-5
... Abstract This article discusses the concepts underlying linear elastic fracture mechanics and elastic-plastic fracture mechanics as well as their importance in characterizing the fracture behavior of the high-strength aluminum alloys. It describes the three methods used for analyzing elastic...
Abstract
This article discusses the concepts underlying linear elastic fracture mechanics and elastic-plastic fracture mechanics as well as their importance in characterizing the fracture behavior of the high-strength aluminum alloys. It describes the three methods used for analyzing elastic-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
...) 24.5 (13.6) Premium casting alloys (high strength and toughness alloys 201.0 T6(S) 2.80 2796 0.101 570–650 1000–1200 27–32 0.29 19.3 (10.7) 24.7 (13.7) T7(P) 2.80 2796 0.101 570–650 1000–1200 32–34 0.29 19.3 (10.7) 24.7 (13.7) 206.0 T4(S) 2.8 2796 0.101 570–650...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article discusses the designation and classification of aluminum casting alloys based on their composition and the factors influencing alloy selection. Alloys discussed include rotor alloys, commercial duralumin alloys, premium casting alloys, piston and elevated-temperature alloys, general-purpose alloys, magnesium alloys, aluminum-zinc-magnesium alloys, and bearing alloys. Six basic types of aluminum alloys developed for casting include aluminum-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, and investment casting. In addition, the article discusses factors affecting the mechanical and physical properties, microstructural features that affect mechanical properties, the effects of alloying, and major applications of aluminum casting alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006569
EISBN: 978-1-62708-210-5
...-known for high-strength and critical applications requiring premium-quality castings. Toughness and strength are not as good as alloy 206.0 ( Fig. 2 ), but the alloys provide high strength with fairly good ductility ( Tables 7 and 8 ). Fig. 2 Variation in plain strain-fracture toughness...
Abstract
The family of type 357 alloys contain the highest magnesium levels and are used where high strength is required. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006567
EISBN: 978-1-62708-210-5
... of 355.0. Both alloys are similar, except the lower iron in C355.0 provides better elongation and somewhat higher tensile strength. Alloy C355.0 is used in premium, high strength applications where castings are usually heat treated for maximum strength. Typical properties are summarized in Tables 2 , 3...
Abstract
Alloys 355.0 and C355.0 are high-strength alloys used in various applications where castings are usually heat treated for maximum strength. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics, and application characteristics of these 3xxx series alloys.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002407
EISBN: 978-1-62708-193-1
...) Per AMS 4242 High-strength (ultimate tensile strength of 345 MPa, or 50 ksi) alloy A357-T6 castings were in production in the United States by the late 1960s. The alloy was used in the F-5 Northrop fighter wing pylon, which is still remarkable in size, complexity, uniformity of mechanical...
Abstract
This article reviews the fatigue and fracture properties of aluminum alloy castings, specifically alloys A356 and A357/D357 (all-T6) and alloy A201-T7, from the perspective of both design and manufacturing considerations. In addition, it provides an overview of the roles played by microstructure, manufacturing processes, test conditions, and casting design in determining the fatigue and fracture properties of aluminum casting alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
... criteria. Their light weight minimizes loads in reciprocating applications, and heat dissipation improves bearing life. Premium Engineered Alloys There is a specific class of aluminum casting alloys with higher-purity compositions designed to provide high strength and high ductility...
Abstract
This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions of some alloys. The article provides a summary of aluminum casting alloy designations of The Aluminum Association, the Unified Numbering System, and specific alloys considered premium strength by definition and by ASTM International and Aerospace Material Specifications. A distillation of data from published industry sources is given for a wide range of the properties and performance characteristics for topics such as: physical and thermophysical properties, typical and minimum mechanical properties, fatigue resistance, fracture resistance, and subcritical crack growth.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
... principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings. aluminum casting alloys centrifugal casting die casting lost foam casting gravity casting investment casting...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article provides an overview of the common methods of aluminum shape casting. These include gravity casting, die casting, sand casting, lost foam casting, shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
... temperature delineate the minimum temperature below which sludging can commonly be expected in high-pressure die casting. Lead Lead is commonly used in aluminum casting alloys at greater than 0.1% for improved machinability. Magnesium Magnesium is the basis for strength and hardness development...
Abstract
This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes the various means of structural control, namely, chemistry control, control of element ratios based on the stoichiometry of intermetallic phases, and control of solidification conditions. The article discusses the modification and grain refinement of aluminum-silicon alloys by the use of modifiers and refiners to influence eutectic and hypereutectic structures in aluminum-silicon alloys. It provides information on foundry alloys for specific casting applications. The article concludes with a discussion on the heat treatment practices and properties of aluminum casting alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... Specification QQ-A-601e, Aluminum Alloy Sand Castings; and Military Specification MIL-A-21180C, Aluminum Alloy Castings, High Strength. Unless otherwise specified, the average values of tensile strength, yield strength, and elongation for specimens cut from castings should not be less than 75% of the tensile...
Abstract
This article is a comprehensive collection of tables and curves that present data on the properties of aluminum castings. Data are presented to explain the physical properties such as ratings of castability, corrosion resistance, machinablity, and weldability for aluminum casting alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005269
EISBN: 978-1-62708-187-0
... traditional nonferrous casting alloys (particularly aluminum) ( Ref 1 , 2 , 3 , 4 ). Examples of squeeze-cast applications include: Axle Carrier Cast from a modified 383 aluminum alloy with a T6 temper and shown in Fig. 4 , the part requires high strength (yield strength >280 MPa, or 40 ksi...
Abstract
This article discusses the types of squeeze-casting machines and the advantages of squeeze casting. It examines the considerations required for the casting and tooling design process of squeeze-casting. The article describes the various factors that affect the squeeze-cast products and outlines a few of the key process characteristics. It provides information on the applications of squeeze-cast and contains a table that compares the tensile, hardness, and impact properties of select squeeze-cast aluminum alloys with those obtained from conventional casting processes.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006568
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys 356.0 and A356.0. Figures illustrate the variation of Charpy impact energy in A356-T6...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys 356.0 and A356.0. Figures illustrate the variation of Charpy impact energy in A356-T6 castings as a function of solution time; and room-temperature aging characteristics for aluminum alloy 356.0-T4. Growth and hardness curves for aluminum alloy 356.0-T4 are also presented.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005974
EISBN: 978-1-62708-168-9
.... chemical composition continuous cooling transformation diagram cooling rate heat treatment impact toughness low-alloy hot-work steel microstructure tempering Introduction HOT-WORK OPERATIONS ARE USED in industrial processes of cutting, shaping, forming, or casting other materials, notably...
Abstract
This article focuses on heat treating of the most important H-series and low-alloy hot-work tool steels, namely, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and surface hardening. It describes the heat-treating procedure for hot-work tools using examples. The article provides information on the North American Die-Casting Association's requirements for steel grades and heat treatment of dies made of hot-work tool steels. It also describes the chemical compositions and mechanical and metallurgical properties of hot-work tool steels.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... the occurrence of microshrinkage and cracks during casting. Aluminum-Copper Casting Alloys (2<italic>xx.x</italic> Alloys) Aluminum-copper alloys have been used extensively in cast and wrought form where strength and toughness are required. These alloys exhibit high strength and hardness at room...
Abstract
Aluminum casting alloys are among the most versatile of all common foundry alloys and generally have high castability ratings. This article provides an overview of the common methods of aluminum shape casting. It discusses the designations of aluminum casting alloys categorized by the Aluminum Association designation system. The article summarizes the basic composition groupings of aluminum casting alloy and discusses the effects of specific alloying elements and impurities. The characteristics of the important casting processes are summarized and compared in a table. The article presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid casting, is also included.
1