Skip Nav Destination
Close Modal
Search Results for
high-strength low-alloy steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2048
Search Results for high-strength low-alloy steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001025
EISBN: 978-1-62708-161-0
... Abstract This article considers four types of high-strength structural steels: heat-treated low-alloy steels, as-rolled carbon-manganese steels, heat-treated (normalized or quenched and tempered) carbon steels, and as-rolled high-strength low-alloy (HSLA) steels (which are also known...
Abstract
This article considers four types of high-strength structural steels: heat-treated low-alloy steels, as-rolled carbon-manganese steels, heat-treated (normalized or quenched and tempered) carbon steels, and as-rolled high-strength low-alloy (HSLA) steels (which are also known as microalloyed steels). The article places emphasis on HSLA steels, which are an attractive alternative in structural applications because of their competitive price per-yield strength ratios. HSLA steels are primarily hot-rolled into the usual wrought product forms and are furnished in the as-hot-rolled condition. In addition to hot-rolled products, HSLA steels are also furnished as cold-rolled sheet and forgings. This article describes the different categories of HSLA steels and provides a summary of characteristics and intended uses of HSLA steels described in the American Society for Testing and Materials (ASTM) specifications. The article also presents some applications of HSLA steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003100
EISBN: 978-1-62708-199-3
... Abstract This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections...
Abstract
This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections that are characterized by higher yield strengths than those of plain carbon structural steels. The article tabulates the typical chemical compositions, tensile properties, heat treatment, product sizes, plate thickness and intended uses of high-strength steels. Further, it presents a short note on heat treated structural low-alloy grades.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001022
EISBN: 978-1-62708-161-0
... Abstract Two high-strength low-alloy (HSLA) families, acicular-ferrite steels and pearlite-reduced steels, contain microalloying additions of vanadium and niobium. Vanadium, niobium, and titanium combine preferentially with carbon and/or nitrogen to form a fine dispersion of precipitated...
Abstract
Two high-strength low-alloy (HSLA) families, acicular-ferrite steels and pearlite-reduced steels, contain microalloying additions of vanadium and niobium. Vanadium, niobium, and titanium combine preferentially with carbon and/or nitrogen to form a fine dispersion of precipitated particles in the steel matrix. This article summarizes the metallurgical effects of vanadium, niobium, molybdenum, and titanium. The metallurgical fundamentals were first applied to forgings in the early 1970s. The ultimate strength of first- and second-generation microalloy steels is adequate for many engineering applications, but these steels do not achieve the toughness of conventional quenched and tempered alloys under normal hot-forging conditions. Third-generation microalloy steels differ from their predecessors in that they are direct quenched from the forging temperature to produce microstructures of lath martensite with uniformly distributed temper carbides. Without subsequent heat treatment, these materials achieve properties, including toughness, similar to those of standard quenched and tempered steels.
Image
Published: 01 January 2006
Image
Published: 01 January 1996
Fig. 10 Ductile crack growth in a high-strength low-alloy steel (A710). The zig-zag crack growth results from void initiation and growth on the plane of maximum strain, as illustrated in Fig. 9 .
More
Image
Published: 31 October 2011
Fig. 4 (a) Friction stir weld on a high-strength low-alloy steel plate part. (b) Corresponding x-ray image showing a long wormhole defect along the advancing side of the weld. Courtesy of GE
More
Image
Published: 01 January 2003
Fig. 5 Microstructure of materials. (a) High-strength low alloy steel (0.2% C) hot rolled. The structure is ferrite and pearlite. 4% picral, then 2% nital etchants were used. Magnification is approximately 200×. (b) 1045 steel sheet, 3 mm (0.13 inch) thick, normalized by austenitizing at 1095
More
Image
Published: 15 January 2021
Fig. 53 Fatigue striations in a vanadium high-strength, low-alloy steel. (a) Longitudinal-transverse orientation; stress-intensity range (Δ K ) = 32.3 to 34.3 M P a m (29.4 to 31.2 ksi in .); and fatigue crack growth rate ( da / dN ) = 3.3 to 3.8 × 10 −5 cm/cycle. (b
More
Image
Published: 01 August 2018
Fig. 4 (a) Friction stir weld on a high-strength low-alloy steel plate part. (b) Corresponding x-ray image showing a long wormhole defect along the advancing side of the weld. Courtesy of GE
More
Image
Published: 01 February 2024
Fig. 41 High-strength, low-alloy steel X-65 (13 mm, or 0.5 in.), Fe-0.05%C-41%Mn-0.018%Si-0.022%Al-0.122%V + Nb + T. 2% nital etch. Original magnification: 200×. (a) Transverse. (b) Longitudinal. Courtesy of George F. Vander Voort, Vander Voort Consulting
More
Image
Published: 01 January 2003
Fig. 3 Oxidation of carbon steel and high-strength low-alloy (HSLA) steel in air. Source: Ref 2
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001404
EISBN: 978-1-62708-173-3
... steels. The article describes six general classes of the metal: low-carbon steels, high-strength low-alloy steels, quenched-and-tempered steels, heat-treatable low-alloy steels, thermal-mechanical-controlled processing steels, and chromium-molybdenum steels. It concludes with an illustration of steels...
Abstract
This article presents in-depth metallurgical information about the response of carbon and low-alloy steels to welding conditions and micro-structural evolution in the weld heat-affected zone. It discusses the fabrication weldability and service weldability of carbon and low-alloy steels. The article describes six general classes of the metal: low-carbon steels, high-strength low-alloy steels, quenched-and-tempered steels, heat-treatable low-alloy steels, thermal-mechanical-controlled processing steels, and chromium-molybdenum steels. It concludes with an illustration of steels' susceptibility to hydrogen-assisted cold cracking relative to carbon content and carbon equivalent.
Image
Published: 01 January 2006
Fig. 19 Forming-limit curves for high-strength low-alloy (HSLA) steel compared with mild steel for sheet thicknesses of 4 mm (0.16 in.). Source: Ref 5
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003995
EISBN: 978-1-62708-185-6
.... The article describes the metallurgical processes in grain refinement of austenite steel by hot working, such as recovery and recrystallization and strain-induced transformation. The grain refinement in high strength low alloy steel by alloy addition is also discussed. The article provides an outline...
Abstract
Thermomechanical processing (TMP) refers to various metal forming processes that involve careful control of thermal and deformation conditions to achieve products with required shape specifications and good properties. This article describes TMP methods in producing hot-rolled steel and reviews how improvements in the strength and toughness depend on the synergistic effect of microalloy additions and on carefully controlled thermomechanical conditions. It discusses TMP variables and the general distinctions between conventional hot rolling and common types of controlled-rolling schedules. The article describes the metallurgical processes in grain refinement of austenite steel by hot working, such as recovery and recrystallization and strain-induced transformation. The grain refinement in high strength low alloy steel by alloy addition is also discussed. The article provides an outline on the key stages of deformation, and the required metallurgical information at each of these stages.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003091
EISBN: 978-1-62708-199-3
... of various steel manufacturing processes, such as ingot casting, continuous casting, and hot rolling. It provides an outline of specialized processing routes of producing ultralow plain carbon steels, interstitial-free steels, high strength low-alloy steels, ultrahigh strength steels, stainless steels...
Abstract
This article presents a detailed account on the process flow, composition, alternative sources, and the advancement of ironmaking, steelmaking and secondary steelmaking practices. Some steels, such as bearing steels, heat-resistant steels, ultrahigh strength missile and aircraft steels, and rotor steels have higher quality requirements and tighter composition control than plain carbon or ordinary low-alloy steels. The production of special-quality steels requires vacuum-based induction or electric remelting and refining capabilities. The article explores the types and characteristics of various steel manufacturing processes, such as ingot casting, continuous casting, and hot rolling. It provides an outline of specialized processing routes of producing ultralow plain carbon steels, interstitial-free steels, high strength low-alloy steels, ultrahigh strength steels, stainless steels, and cold-rolled products, and briefly explains the analytical techniques for liquid steels.
Image
Published: 01 January 2006
Fig. 8 Yield strength and formability (in terms of tensile ductility) of conventional high-strength steels (HSS) and advanced high-strength steels (AHSS). Types of steels: BH, bake-hardening; CMn, carbon-manganese; CP, complex phase; DP, dual-phase; HSLA, high-strength, low-alloy steel; IF-HS
More
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003806
EISBN: 978-1-62708-183-2
... of these grades. In addition, potential standard (PS) grades, formerly SAE PS and EX (experimental) grades, are applicable, along with high-strength low-alloy and structural alloy steels. Small additions of some alloying elements will enhance corrosion resistance in moderately corrosive environments. In severe...
Abstract
Low-alloy steels are used in a broad spectrum of applications. In some cases, corrosion resistance is a major factor in alloy selection; in other applications, it is only a minor consideration. This article reviews the applications of alloy steel products in four major industries, namely, oil and gas production, energy conversion systems, marine applications, and chemical processing. Emphasis is placed on the corrosion characteristics of the products, which are used in various applications of each industry.
Image
Published: 01 January 2005
Fig. 29 (a) Microstructure of low-carbon steel after rolling. (b) Microstructure of high-strength low-alloy steel after rolling. See text for details. Courtesy of L. Cuddy, Pennsylvania State University
More
Image
Published: 01 August 2013
Fig. 14 Comparison of strength levels achievable by means of continuous and batch g of solution-strengthened and high-strength low-alloy steels. Source: Ref 27
More
Image
Published: 01 January 2005
Fig. 13 Effect of intercritical deformation (710 °C, or 1310 °F) on strength and 50% shear fracture appearance transition temperature (FATT) of a niobium high-strength low-alloy steel. Source: Ref 18
More
1