Skip Nav Destination
Close Modal
Search Results for
high-strength casting alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1635 Search Results for
high-strength casting alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006567
EISBN: 978-1-62708-210-5
... Abstract Alloys 355.0 and C355.0 are high-strength alloys used in various applications where castings are usually heat treated for maximum strength. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics...
Abstract
Alloys 355.0 and C355.0 are high-strength alloys used in various applications where castings are usually heat treated for maximum strength. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics, and application characteristics of these 3xxx series alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006568
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys 356.0 and A356.0. Figures illustrate the variation of Charpy impact energy in A356-T6...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys 356.0 and A356.0. Figures illustrate the variation of Charpy impact energy in A356-T6 castings as a function of solution time; and room-temperature aging characteristics for aluminum alloy 356.0-T4. Growth and hardness curves for aluminum alloy 356.0-T4 are also presented.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006569
EISBN: 978-1-62708-210-5
... characteristics of Al-Si-Mg high-strength casting alloys. aluminum alloy 357.0 aluminum-silicon-magnesium alloys fabrication characteristics high-strength casting alloys mechanical properties physical properties Alloy 357.0 is similar to alloy 356.0, but it has a larger amount of magnesium, which...
Abstract
The family of type 357 alloys contain the highest magnesium levels and are used where high strength is required. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications characteristics of Al-Si-Mg high-strength casting alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006558
EISBN: 978-1-62708-210-5
... Abstract Alloys 242.0 and A242.0 are age-hardenable casting alloys with excellent strength at elevated temperatures. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics, and application...
Abstract
Alloys 242.0 and A242.0 are age-hardenable casting alloys with excellent strength at elevated temperatures. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics, and application characteristics of these 2xxx series alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006576
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloys 383.0, 384.0, and A384.0 are Al-Si-Cu high-strength die-casting alloys suitable for castings with thin walls and large areas. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication...
Abstract
The aluminum alloys 383.0, 384.0, and A384.0 are Al-Si-Cu high-strength die-casting alloys suitable for castings with thin walls and large areas. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of these 3xxx series alloys.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
... ALUMINUM ALLOYS 201.0 and A201.0 are structural casting alloys available as sand, permanent mold and investment castings. They are used in structural casting members, applications requiring high tensile and yield strengths with moderate elongation, and where high strength and energy-absorption capacity...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006555
EISBN: 978-1-62708-210-5
... Abstract The 206.0, A206.0, and B206.0 alloys (aluminum alloys 2xxx) are structural castings in the heat-treated temper for automotive and aerospace applications where high tensile and yield strengths with moderate elongations are needed. This datasheet provides information on key alloy...
Abstract
The 206.0, A206.0, and B206.0 alloys (aluminum alloys 2xxx) are structural castings in the heat-treated temper for automotive and aerospace applications where high tensile and yield strengths with moderate elongations are needed. This datasheet provides information on key alloy metallurgy and fabrication characteristics of these 2xxx series alloys, as well as the effects of processing on their typical physical and mechanical properties.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006585
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications of Al-Mg high-strength casting alloy 535.0. aluminum alloy 535.0 aluminum alloy A535.0 aluminum alloy B535.0...
Image
Published: 01 December 2004
Fig. 46 Microstructures of as-rolled, continuously cast high-strength, low-alloy steel (Fe-0.19%C-1.24%Mn-0.37%Si-0.08%V). (a) Specimen containing segregation and some cracks (arrows) etched with 2% nital. The normal structure is ferrite and pearlite, but bainite was observed in the segregated
More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006588
EISBN: 978-1-62708-210-5
... Abstract Alloy 713.0 is an aluminum-based casting alloy that ages at room temperature to provide high-strength sand and permanent-mold castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics...
Abstract
Alloy 713.0 is an aluminum-based casting alloy that ages at room temperature to provide high-strength sand and permanent-mold castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series alloy.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006570
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of Al-Si-Mg high-strength premium casting alloy 359.0. aluminum alloy 359.0 aluminum-silicon...
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
... Abstract This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys...
Abstract
This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys bearings. A table lists selected applications for aluminum casting alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
... by casting, forming, machining, brazing, soldering, polishing, and plating. The properties of copper alloys occur in unique combinations found in no other alloy system. Historically, key properties were relative strength, ductility, and toughness, which have been surpassed in contemporary use by high thermal...
Abstract
The properties of copper alloys occur in unique combinations found in no other alloy system. This article focuses on the major and minor alloying additions and their impact on the properties of copper. It describes major alloying additions, such as zinc, tin, lead, aluminum, silicon, nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low-pressure die casting. The article provides information on the types of copper castings and tabulates the nominal chemical composition and mechanical properties of several cast alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001082
EISBN: 978-1-62708-162-7
... temperature with R = +0.1; frequency = 5 Hz using triangular wave form Another approach to the improvement of fatigue of cast parts is the selection of high-strength cast alloy rather than Ti-6Al-4V. Figure 11(b) compares the fatigue strength of investment cast Ti-3Al-8V-6Cr-4Zr-4Mo (Beta C) and Ti...
Abstract
The combination of high strength-to-weight ratio, excellent mechanical properties, and corrosion resistance makes titanium the best material choice for many critical applications. This article commences with a description of the historical perspective of titanium casting technology. It discusses the various types of molding methods, namely, rammed graphite molding, and lost-wax investment molding. The article provides information on the casting design, melting, and pouring practices, and describes the microstructure, hot isostatic pressing, heat treatment, and mechanical properties of Ti-6AI-4V alloy. It also talks about the chemical milling and weld repair, and describes the product applications of titanium alloy castings. Tensile properties, standard industry specifications, and chemical compositions of various titanium alloy castings are tabulated.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001071
EISBN: 978-1-62708-162-7
... in molds for plastic component production where fine cast-in details such as wood or leather grain is desired. Cast alloys are also used for thermal management in welding equipment, for waveguides, and for mold components such as core pins. High-strength alloys are used in sporting equipment...
Abstract
Addition of beryllium, up to about 2 wt″, produces dramatic effects in copper, nickel, aluminum, magnesium, gold, zinc, and other base metal alloys. This article provides information on the chemical composition, microstructure, heat treatment, fabrication characteristics, production steps and physical metallurgy of beryllium-copper, beryllium-nickel, and beryllium-aluminum alloy, and tabulates their mechanical, electrical and physical properties, and temper designations. It describes the important features of this alloy group, including information on safe handling. Additionally, the article presents examples of the beneficial properties of beryllium-copper alloys and quantifies some of the major reasons for their selection for particular applications.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005269
EISBN: 978-1-62708-187-0
... traditional nonferrous casting alloys (particularly aluminum) ( Ref 1 , 2 , 3 , 4 ). Examples of squeeze-cast applications include: Axle Carrier Cast from a modified 383 aluminum alloy with a T6 temper and shown in Fig. 4 , the part requires high strength (yield strength >280 MPa, or 40 ksi...
Abstract
This article discusses the types of squeeze-casting machines and the advantages of squeeze casting. It examines the considerations required for the casting and tooling design process of squeeze-casting. The article describes the various factors that affect the squeeze-cast products and outlines a few of the key process characteristics. It provides information on the applications of squeeze-cast and contains a table that compares the tensile, hardness, and impact properties of select squeeze-cast aluminum alloys with those obtained from conventional casting processes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003134
EISBN: 978-1-62708-199-3
... sleeves sometimes are effective in slowing down the solidification rate in certain areas to maintain directional solidification. Mechanical Properties Most copper-base casting alloys containing tin, lead, or zinc have only moderate tensile and yield strengths, low-to-medium hardness, and high...
Abstract
Copper alloy castings are used in applications that require superior corrosion resistance, high thermal or electrical conductivity, good bearing surface qualities, or other special properties. Discussing the types and compositions of copper alloy used for casting, this article describes the major factors considered in alloy selection for casting, including raw material cost, castability, machinability, and the bearing and wear properties. It also provides information on the cost of the final product.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005970
EISBN: 978-1-62708-168-9
... Abstract High-alloy graphitic cast irons are used primarily in applications requiring corrosion resistance or strength and oxidation resistance in high-temperature service. This article describes the properties, applications and heat treatment processes of high-alloy graphitic cast irons...
Abstract
High-alloy graphitic cast irons are used primarily in applications requiring corrosion resistance or strength and oxidation resistance in high-temperature service. This article describes the properties, applications and heat treatment processes of high-alloy graphitic cast irons, including austenitic gray irons and austenitic ductile irons. It also provides a discussion on the heat treatment of high-silicon irons for heat resisting and corrosion resisting applications.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006325
EISBN: 978-1-62708-179-5
... decade has led to an increased use of large, high-integrity ductile iron castings for hubs, base frames, gears, and axles ( Ref 7 ). Standard-grade ductile cast irons are Fe-C-Si alloys to which manganese is added to adjust strength, but additions are lower than in gray cast irons ( Ref 1...
Abstract
The mechanical properties of ductile cast irons are determined largely by the microstructure of the steel matrix in combination with the shape, size, and distribution of the graphite nodules. This article describes the designation of ductile cast irons according to the ASTM International designation system and reviews standard-grade ductile cast irons. An overview of the most commonly used standards related to designation and specification of ductile cast iron is presented in a table. This article discusses the use of low-alloy ductile cast irons at elevated temperatures and the chemical compositions and some mechanical properties of austenitic ductile cast irons. The article concludes with a discussion on heat treatment of austempered ductile iron.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006577
EISBN: 978-1-62708-210-5
... have excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion, high thermal conductivity, good elevated temperature strength and hardness, and very good castability. Corrosion resistance is fair. It is used mainly as a substitute for gray cast...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and application characteristics of Al-Si-Cu-Mg hypereutectic casting alloys 390.0, A390.0, and B390.0. Tool lives for the machining of alloys 380 and 390 are illustrated.
1