Skip Nav Destination
Close Modal
Search Results for
high-strength aluminum-magnesium-manganese-chromium alloy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 393 Search Results for
high-strength aluminum-magnesium-manganese-chromium alloy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006703
EISBN: 978-1-62708-210-5
... chemical composition fabrication characteristics high-strength aluminum-magnesium-manganese-chromium alloy mechanical properties physical properties tensile properties Alloy 5456 ( Table 1 ) was developed for marine applications and is widely used in the maritime industry, primarily where weight...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003124
EISBN: 978-1-62708-199-3
... coupled with cold work) are those in the aluminum-magnesium series, ranging form 0.5 to 6 wt% Mg. These alloys often contain small additions of transition elements, such as chromium or manganese, and less frequently zirconium, to control the grain or subgrain structure, and iron and silicon impurities...
Abstract
The physical and mechanical properties of aluminum alloy can be improved by strengthening mechanisms such as strain hardening used for non-heat treatable aluminum alloy and precipitation hardening used for heat treatable aluminum alloy. This article focuses on the effect of strengthening mechanisms on the physical and mechanical properties of non-heat treatable and heat treatable aluminum alloys. It describes the use of the aluminum alloy phase diagram in determining the melting temperature, solidification path, equilibrium phases, and explains the effect of alloying element in phase formation.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006503
EISBN: 978-1-62708-207-5
... and Temper Designations” in this Volume. Fig. 5 Strain-hardening curves for aluminum (1100) and for aluminum-manganese (3003) and aluminum-magnesium (5050 and 5052) alloys Tensile-property data illustrating typical relationships between strength and elongation for non-heat-treatable alloys in H1...
Abstract
This article provides a thorough review of the physical metallurgy of aluminum alloys and its role in determining the properties and from a design and manufacturing perspective. And its role in include the effects of composition, mechanical working, and/or heat treatment on structure and properties. This article focuses on the effects of alloying and the metallurgical factors on phase constituents, structure, and properties of aluminum alloys. Effects from different combinations of alloying elements are described in terms of relevant alloy phase diagrams. The article addresses the underlying alloying and structural aspects that affect the properties and possible processing routes of aluminum alloys. It provides information on the heat treatment effects on the physical properties of aluminum alloys and the microstructural effects on the fatigue and fracture of aluminum alloys. The important alloying elements and impurities are listed alphabetically as a concise review of major effects.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001059
EISBN: 978-1-62708-162-7
... as most other aluminum alloys, and under certain conditions they may be subject to intergranular corrosion. Therefore, these alloys in the form of sheet usually are clad with a high-purity aluminum or with a magnesium-silicon alloy of the 6 xxx series, which provides galvanic protection of the core...
Abstract
Aluminum mill products are those that have been subjected to plastic deformation by hot- and cold-working mill processes such as rolling, extruding, and drawing, either singly or in combination. Microstructural changes associated with the working and with any accompanying thermal treatments are used to control certain properties and characteristics of the worked, or wrought, product or alloy. This article discusses the designation system, classification, product forms, corrosion and fabrication characteristics, and applications of wrought aluminum alloys. Commercial wrought aluminum products are divided into flat-rolled products (sheet, plate, and foil); rod, bar, and wire; tubular products; shapes; and forgings. The article discusses factors affecting the strengthening mechanisms, fracture toughness, and physical properties of aluminum alloys, in addition to the effects of alloying on the physical and mechanical properties. Important alloying elements and impurities are listed alphabetically as a concise review of major effects.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
... (above 200 °C, or 390 °F). Lithium additions to aluminum-copper alloys lower density and impart a combination of high strength and fatigue properties to some 2 xxx aerospace alloys. The 2 xxx (Al-Cu- X ) alloys were based on the discovery of precipitation hardening by Wilm in 1906. Until...
Abstract
The development of aluminum alloys has progressed along two tracks: heat treatable and non-heat treatable. The Aluminum Association alloy composition limits and product temper are defined for major alloying elements. This article summarizes the historical evolution of the different series of wrought aluminum alloys (1xxx to 8xxx) and discusses their applications based on the alloying system introduced by the Aluminum Association.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003674
EISBN: 978-1-62708-182-5
... to 7%. Several also contain magnesium and/or manganese. The alloys in this series are strengthened by thermal processing. These alloys attain high strengths and are used in sheet, plate, and extruded forms, primarily in aerospace applications. Copper in aluminum alloys generally decreases...
Abstract
This article addresses the general effects of the composition, mechanical treatment, surface treatment, and processing on the corrosion resistance of aluminum and aluminum alloys. There are five major alloying elements: copper, manganese, silicon, magnesium, and zinc, which significantly influence the properties of aluminum alloys. There are organic coatings or paints that provide a barrier between a corrosive environment and aluminum surface. Inorganic coatings, including claddings, and enhanced oxides, such as anodized films, Boehmite films, and conversion coatings also help in corrosion prevention. The article assists in the information on selection of fabrication operations, as they play an important role in corrosion resistance.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003174
EISBN: 978-1-62708-199-3
... Effects, levels, and sources of some trace elements in gray iron Element Trace level, % Effects Sources Aluminum ≤0.03 Promotes hydrogen pinhole defects, especially when using green sand molds and at levels above 0.005%. Neutralizes nitrogen Deliberate addition, ferrous alloys, inoculants...
Abstract
Cast iron, which usually refers to an in situ composite of stable eutectic graphite in a steel matrix, includes the major classifications of gray iron, ductile iron, compacted graphite iron, malleable iron, and white iron. This article discusses melting, pouring, desulfurization, inoculation, alloying, and melt treatment of these major ferrous alloys as well as carbon and alloy steels. It explains the principles of solidification by describing the iron-carbon phase diagram, and provides a pictorial presentation of the basic microstructures and processing steps for cast irons.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005887
EISBN: 978-1-62708-167-2
...-silicon alloys (silicon brasses and bronzes) Cast copper bismuth and copper-bismuth-selenium alloys Bronzes are alloys of copper with tin, plus at least one of the following: phosphorus, aluminum, silicon, manganese, and nickel. These alloys can achieve high strengths, combined with good...
Abstract
This article focuses on the temperature requirements of typical nonferrous metals and their alloys of commercial importance. These include aluminum, copper, magnesium, and titanium. The article describes the thermoelectricity, photoelectricity, and capacity of aluminum alloys. In addition, it provides information on the electrical properties of copper and its alloys. The article also lists typical physical and mechanical properties of aluminum alloys at ambient temperature.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005294
EISBN: 978-1-62708-187-0
... extremely high eutectic cell counts. Ferrosilicon alloys are also used to treat gray iron. They are typically based on 50 or 75% ferrosilicon and act as carriers for the inoculating (reactive) elements, which include aluminum, barium, calcium, cerium or other rare earths, magnesium, strontium, titanium...
Abstract
This article reviews the production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the molten metal treatments for high-silicon gray, high-nickel ductile, and malleable irons. Foundry practices are also described for compacted graphite, high-silicon ductile, and high-alloy white irons.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... Cold working of annealed material to H1 tempers increases the dislocation density. This increases strength, particularly yield strength, and decreases ductility. In unalloyed aluminum and in alloys containing little magnesium, cold working produces cells that have walls containing a high density...
Abstract
This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available by its particular composition and the proper choice of processing method. The article describes the composition, designation system, properties, and processing method of these metals and alloys. It discusses the effect of alloying elements in these alloys. The article explains microstructure/property relationships that are used to make specific properties available to the designers of structural applications. It provides examples of phase diagrams that illustrate eutectic and peritectic reactions.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
...-lanthanides alloys Treatment of a base iron containing high amounts of anticompacting elements (sulfur, aluminum) with alloys containing compacting elements (magnesium, cerium) From the standpoint of controlling the structure, it is easier to combine compacting and anticompacting elements...
Abstract
This article discusses criteria that can be used for the classification of cast iron: fracture aspect, graphite shape, microstructure of the matrix, commercial designation, and mechanical properties. It addresses the main factors of influence on the structure of cast iron, including chemical composition, cooling rate, and heat treatment. The article describes some basic principles of cast iron metallurgy. It discusses the main effects of the chemical composition of ductile iron and compacted graphite (CG) iron. The composition of malleable irons must be selected in such a way as to produce a white as-cast structure and to allow for fast annealing times. Some typical compositions of malleable irons are presented in a table. The article concludes with information on special cast irons.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
... of the aluminum-magnesium, Al-Mg-Si, and Al-Mg-Zn groups. Chromium dispersoids contribute to strength in non-heat-treatable alloys and control grain size and degree of recrystallization in heat treatable alloy products. Chromium has a slow diffusion rate and forms finely dispersed phases in wrought products. In 5...
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... ambient temperature. Precipitation-Hardening Alloys of Al-Cu-Mg Additions of magnesium to aluminum-copper alloys accelerate and intensify natural age hardening. These were the first heat treatable high-strength aluminum alloys, and they have continued through the years to be among the most popular...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006594
EISBN: 978-1-62708-210-5
... aluminum-copper alloys, as little as 0.5% Mg is effective in changing aging characteristics. In wrought products, the effect of magnesium additions on strength also is improved by cold working prior to aging. Cold working also influences the strength of naturally aged aluminum-copper alloys...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... method used. Three systems of magnesium alloys are used for high-pressure die casting: magnesium-aluminum-zinc-manganese (AZ), magnesium-aluminum-manganese (AM), and magnesium-aluminum-silicon-manganese (AS). Systems used for sand and permanent mold castings include: magnesium-aluminum-manganese...
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... copper, magnesium, chromium, manganese, or combinations of these elements 8 xx.x : Aluminum alloys containing tin as the major alloying element 9 xx.x : Currently not used These alloy designations also have a suffix, which designates the product to which the standard applies. Designations...
Abstract
Aluminum casting alloys are among the most versatile of all common foundry alloys and generally have high castability ratings. This article provides an overview of the common methods of aluminum shape casting. It discusses the designations of aluminum casting alloys categorized by the Aluminum Association designation system. The article summarizes the basic composition groupings of aluminum casting alloy and discusses the effects of specific alloying elements and impurities. The characteristics of the important casting processes are summarized and compared in a table. The article presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid casting, is also included.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006509
EISBN: 978-1-62708-207-5
... wrought alloys and the 7 xx.x cast alloys. The addition of copper to the Al-Zn-Mg alloys, together with small but important amounts of chromium and manganese, results in the highest-strength aluminum-base alloys commercially available. In this alloy system, zinc and magnesium control the aging...
Abstract
Heat treatment of aluminum alloys frequently refers to the heat treatable aluminum alloys that can be strengthened by solution treatment, quenching, and subsequent hardening. This article introduces the general metallurgy of strengthening aluminum alloys by heat treatment. It discusses various heat treatable alloying elements, such as copper, chromium, iron, magnesium, silicon, zinc, and lithium. The article describes the age-hardening treatments and generalized precipitation sequence for aluminum alloys. It reviews the solution heat treatment in terms of solution heating time and temperature, as well as high-temperature oxidation. The article also discusses quench sensitivity, vacancy loss, grain-boundary precipitates, and quench delay for the heat treatment of aluminum. It concludes with a discussion on the deformation of aluminum alloys prior to aging.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0009206
EISBN: 978-1-62708-161-0
... on the tensile strength of gray iron. Source: Ref 5 The manganese content varies as a function of the desired matrix. Because manganese is a strong pearlite promoter, typically, it can be as low as 0.1% for ferritic irons and as high as 1.2% for pearlitic irons. From the minor elements, phosphorus...
Abstract
This article discusses the classification schemes for cast irons and describes the characteristics of major categories, including gray iron, white iron, ductile iron, compacted graphite iron, mottled iron, malleable iron, and austempered ductile iron. It also discusses some of the basic principles of cast iron metallurgy. When discussing the metallurgy of cast iron, the main factors of influence on the structure include chemical composition, cooling rate, liquid treatment, and heat treatment. In terms of commercial status, cast irons can be classified as common cast irons and special cast irons. Special cast irons differ from the common cast irons mainly in the higher content of alloying elements. Alloying elements can be added in common cast iron to enhance some mechanical properties. They influence both the graphitization potential and the structure and properties of the matrix.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006487
EISBN: 978-1-62708-207-5
...-worked materials with strengths initially greater than desired H3 Strain hardened and stabilized H32, H34, H36, H38: Tempers for age softening aluminum-magnesium alloys that are strain hardened and then heated at a low temperature to increase ductility and stabilize mechanical properties H112...
Abstract
Work or strain hardening is a natural consequence of most working and forming operations on aluminum and its alloys. This article describes the annealing practices of strain-hardened alloys. It lists the temper designations for strain-hardened alloys. The article discusses the annealing of worked structures in terms of recovery, recrystallization, and grain coarsening. It summarizes some of the annealing treatments used in conjunction with fabrication by metal working, including preheating, interannealing, self-annealing, stabilization, and stoving. The article concludes with information on the key process parameters affecting the final properties of aluminum alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001275
EISBN: 978-1-62708-170-2
....” A comprehensive summary of literature sources related to chromate conversion coatings is available in a detailed review of surface treatments for aluminum alloys ( Ref 1 ). In addition, processing and testing details for application of chromium conversion coatings to aluminum, magnesium, cadmium, copper, silver...
Abstract
This article briefly describes the basic attributes of chromate conversion coatings and the processes for applying them. It provides information on the influence of substrate microstructure on the performance of coating deposits and on the mechanism of substrate protection supplied by chromate coatings. The article also discusses the development of replacement technologies in response to environmental constraints that have developed around the use of chromium-base compounds.
1