1-20 of 393 Search Results for

high-strength aluminum-magnesium-manganese-chromium alloy

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006703
EISBN: 978-1-62708-210-5
... chemical composition fabrication characteristics high-strength aluminum-magnesium-manganese-chromium alloy mechanical properties physical properties tensile properties Alloy 5456 ( Table 1 ) was developed for marine applications and is widely used in the maritime industry, primarily where weight...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003124
EISBN: 978-1-62708-199-3
... coupled with cold work) are those in the aluminum-magnesium series, ranging form 0.5 to 6 wt% Mg. These alloys often contain small additions of transition elements, such as chromium or manganese, and less frequently zirconium, to control the grain or subgrain structure, and iron and silicon impurities...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006503
EISBN: 978-1-62708-207-5
... and Temper Designations” in this Volume. Fig. 5 Strain-hardening curves for aluminum (1100) and for aluminum-manganese (3003) and aluminum-magnesium (5050 and 5052) alloys Tensile-property data illustrating typical relationships between strength and elongation for non-heat-treatable alloys in H1...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001059
EISBN: 978-1-62708-162-7
... as most other aluminum alloys, and under certain conditions they may be subject to intergranular corrosion. Therefore, these alloys in the form of sheet usually are clad with a high-purity aluminum or with a magnesium-silicon alloy of the 6 xxx series, which provides galvanic protection of the core...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006516
EISBN: 978-1-62708-210-5
... (above 200 °C, or 390 °F). Lithium additions to aluminum-copper alloys lower density and impart a combination of high strength and fatigue properties to some 2 xxx aerospace alloys. The 2 xxx (Al-Cu- X ) alloys were based on the discovery of precipitation hardening by Wilm in 1906. Until...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003674
EISBN: 978-1-62708-182-5
... to 7%. Several also contain magnesium and/or manganese. The alloys in this series are strengthened by thermal processing. These alloys attain high strengths and are used in sheet, plate, and extruded forms, primarily in aerospace applications. Copper in aluminum alloys generally decreases...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003174
EISBN: 978-1-62708-199-3
... Effects, levels, and sources of some trace elements in gray iron Element Trace level, % Effects Sources Aluminum ≤0.03 Promotes hydrogen pinhole defects, especially when using green sand molds and at levels above 0.005%. Neutralizes nitrogen Deliberate addition, ferrous alloys, inoculants...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005887
EISBN: 978-1-62708-167-2
...-silicon alloys (silicon brasses and bronzes) Cast copper bismuth and copper-bismuth-selenium alloys Bronzes are alloys of copper with tin, plus at least one of the following: phosphorus, aluminum, silicon, manganese, and nickel. These alloys can achieve high strengths, combined with good...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005294
EISBN: 978-1-62708-187-0
... extremely high eutectic cell counts. Ferrosilicon alloys are also used to treat gray iron. They are typically based on 50 or 75% ferrosilicon and act as carriers for the inoculating (reactive) elements, which include aluminum, barium, calcium, cerium or other rare earths, magnesium, strontium, titanium...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... Cold working of annealed material to H1 tempers increases the dislocation density. This increases strength, particularly yield strength, and decreases ductility. In unalloyed aluminum and in alloys containing little magnesium, cold working produces cells that have walls containing a high density...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
...-lanthanides alloys Treatment of a base iron containing high amounts of anticompacting elements (sulfur, aluminum) with alloys containing compacting elements (magnesium, cerium) From the standpoint of controlling the structure, it is easier to combine compacting and anticompacting elements...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
... of the aluminum-magnesium, Al-Mg-Si, and Al-Mg-Zn groups. Chromium dispersoids contribute to strength in non-heat-treatable alloys and control grain size and degree of recrystallization in heat treatable alloy products. Chromium has a slow diffusion rate and forms finely dispersed phases in wrought products. In 5...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... ambient temperature. Precipitation-Hardening Alloys of Al-Cu-Mg Additions of magnesium to aluminum-copper alloys accelerate and intensify natural age hardening. These were the first heat treatable high-strength aluminum alloys, and they have continued through the years to be among the most popular...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006594
EISBN: 978-1-62708-210-5
... aluminum-copper alloys, as little as 0.5% Mg is effective in changing aging characteristics. In wrought products, the effect of magnesium additions on strength also is improved by cold working prior to aging. Cold working also influences the strength of naturally aged aluminum-copper alloys...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... method used. Three systems of magnesium alloys are used for high-pressure die casting: magnesium-aluminum-zinc-manganese (AZ), magnesium-aluminum-manganese (AM), and magnesium-aluminum-silicon-manganese (AS). Systems used for sand and permanent mold castings include: magnesium-aluminum-manganese...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... copper, magnesium, chromium, manganese, or combinations of these elements 8 xx.x : Aluminum alloys containing tin as the major alloying element 9 xx.x : Currently not used These alloy designations also have a suffix, which designates the product to which the standard applies. Designations...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006509
EISBN: 978-1-62708-207-5
... wrought alloys and the 7 xx.x cast alloys. The addition of copper to the Al-Zn-Mg alloys, together with small but important amounts of chromium and manganese, results in the highest-strength aluminum-base alloys commercially available. In this alloy system, zinc and magnesium control the aging...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0009206
EISBN: 978-1-62708-161-0
... on the tensile strength of gray iron. Source: Ref 5 The manganese content varies as a function of the desired matrix. Because manganese is a strong pearlite promoter, typically, it can be as low as 0.1% for ferritic irons and as high as 1.2% for pearlitic irons. From the minor elements, phosphorus...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006487
EISBN: 978-1-62708-207-5
...-worked materials with strengths initially greater than desired H3 Strain hardened and stabilized H32, H34, H36, H38: Tempers for age softening aluminum-magnesium alloys that are strain hardened and then heated at a low temperature to increase ductility and stabilize mechanical properties H112...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001275
EISBN: 978-1-62708-170-2
....” A comprehensive summary of literature sources related to chromate conversion coatings is available in a detailed review of surface treatments for aluminum alloys ( Ref 1 ). In addition, processing and testing details for application of chromium conversion coatings to aluminum, magnesium, cadmium, copper, silver...