Skip Nav Destination
Close Modal
Search Results for
high-strain-rate uniaxial stress response
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 268 Search Results for
high-strain-rate uniaxial stress response
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003298
EISBN: 978-1-62708-176-4
... materials. These techniques include the data-reduction techniques and assumptions required to use polymer pressure bars, the importance of sample-size considerations to polymer testing, and temperature-control methodologies to measure the high-strain-rate uniaxial stress response of polymers and other soft...
Abstract
This article addresses the specialized aspects required to accurately quantify the behavior of soft materials, including polymers and polymeric composites, using the split-Hopkinson pressure bar (SHPB). It details some of the specialized SHPB techniques that facilitate testing soft materials. These techniques include the data-reduction techniques and assumptions required to use polymer pressure bars, the importance of sample-size considerations to polymer testing, and temperature-control methodologies to measure the high-strain-rate uniaxial stress response of polymers and other soft materials.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003293
EISBN: 978-1-62708-176-4
..., Bertram Hopkinson. Based on these contributions and also on an important paper by R.M. Davies, H. Kolsky invented the split-Hopkinson pressure bar, which allows the deformation of a sample of a ductile material at a high strain rate, while maintaining a uniform uniaxial state of stress within the sample...
Abstract
High strain rate testing is important for many engineering structural applications and metalworking operations. This article describes various methods for high strain rate testing. Several methods have been developed, starting with the pioneering work of John Hopkinson and his son, Bertram Hopkinson. Based on these contributions and also on an important paper by R.M. Davies, H. Kolsky invented the split-Hopkinson pressure bar, which allows the deformation of a sample of a ductile material at a high strain rate, while maintaining a uniform uniaxial state of stress within the sample.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003299
EISBN: 978-1-62708-176-4
... ceramics, differs from quasi-static response in two ways. First, there is an increase in fracture strength at high strain rates. Figure 10 illustrates data on aluminum-nitride uniaxial compressive fracture strength as a function of strain rate. Similar trends were also observed in several other...
Abstract
Split-Hopkinson pressure bar (SHPB) testing is traditionally used for determining the plastic properties of metals (which are softer than the pressure bar material) at high strain rates. However, the use of this method for testing ceramic has various limitations. This article provides a discussion on the operational principle of the traditional SHPB technique and the relevant assumptions in the derivation of the stress-strain relationship. It describes the inherent limitations on the validity of these assumptions in testing ceramics and discusses the necessary modifications in SHPB design and test procedure for evaluating high-strength brittle ceramics. The article includes information on the maximum strain rate that can be obtained in ceramics using an SHPB and the necessity of incident pulse shaping. It also reviews the specimen design considerations, interpretation of experimental results obtained from SHPB testing of ceramics, and effectiveness of the proposed modifications.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003296
EISBN: 978-1-62708-176-4
...-Hopkinson pressure bar, which is capable of achieving the highest uniform uniaxial stress loading of a specimen in compression at nominally constant strain rates of the order of 10 3 s −1 . Hopkinson bar techniques have also been developed to probe the high-rate response of materials in tensile...
Abstract
This article describes the techniques involved in measuring the high-strain-rate stress-strain response of materials using a split-Hopkinson pressure bar (SHPB). It focuses on the generalized techniques applicable to all SHPBs, whether compressive, tensile, or torsion. The article discusses the methods of collecting and analyzing compressive high-rate mechanical property data. A review of the critical experimental variables that must be controlled to yield valid and reproducible high-strain-rate stress-strain data is also included. Comparisons and contrasts to the differences invoked when using a tensile Hopkinson bar in terms of loading technique, sample design, and stress-state stability, are discussed.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003295
EISBN: 978-1-62708-176-4
... determined by torsion tests on a variety of materials compare more or less well with those determined by axial tests. Another advantage of torsion testing at high strain rates is the absence of geometric dispersion. When an axial stress pulse (tension or compression) travels down a cylindrical bar...
Abstract
This article reviews the dynamic factors, experimental methods and setup, and result analysis of different types of high strain rate shear tests. These include high strain rate torsion testing, double-notch shear testing and punch loading, drop-weight compression shear testing, thick-walled cylinder testing, and pressure-shear plate impact testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003302
EISBN: 978-1-62708-176-4
... of the specimen and the velocity of the indenter during the impact. This information is later used to calculate the strain rate of deformation and to verify the hardness measurements with the yield stress values obtained from uniaxial stress-strain response at similar strain rates. Test Setup The test...
Abstract
This article describes a method for determining the dynamic indentation response of metals and ceramics. This method, based on split Hopkinson pressure bar testing, can determine rate-dependent characteristics of metals and ceramics at moderate strain rates. For example, dynamic indentation testing reveals a significant effect of loading rates on the hardness and the induced plastic zone size in metals and on the hardness and induced crack sizes of brittle materials. The article also explains the rebound and pendulum methods for dynamic hardness testing.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006282
EISBN: 978-1-62708-169-6
... the superplasticity of titanium alloys. Strain-rate sensitivity, m , is defined as: m ≈ Δ ( log σ ) Δ ( log ε ˙ ) where σ is flow stress, and is strain rate. High values of m (>0.5) are required for superplastic behavior. The relationship between m values and strain...
Abstract
This article provides an in-depth treatment on the deformation and recrystallization of titanium alloys. It provides information on the predominant mode of plastic deformation that occurs in titanium in terms of the most common crystallographic planes. The article explains the relationship of the recovery process to the recrystallization, grain-growth process, and the effects of time and temperature on stress relief. It describes the factors that influence the rate of recrystallization and the conditions required for neocrystallization to occur. The article explains the mechanism of strain hardening and its effects on the mechanical properties of titanium alloys. It also discusses the factors that influence the superplasticity of titanium alloys.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003303
EISBN: 978-1-62708-176-4
... of metallurgical substructure and postmortem strengthening effects of shock wave loading on metals began with the pioneering article of Cyril Stanley Smith ( Ref 24 ) in 1958. In this article Smith describes how the uniaxial strain, high-strain-rate loading, characteristic of shock wave loading, affects...
Abstract
The study of the physical properties of ductile solids subjected to shock wave loading is undertaken to understand how the thermodynamic conditions and strain rate affect material response. This article presents a description of a range of possible experimental techniques to quantify the structure/property effects of planar shock waves on ductile materials (metals and alloys) due to the wave propagation through the material. The techniques include explosive-driven shock-loading methods, shock-loading methods using exploding foil and laser-driven impactors, gas/powder launcher-driven shock loading methods, and radiation-driven shock-loading methods. Design parameters for shock recovery fixtures, spallation fixtures, and the flyer-plate experiment, are also discussed.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006971
EISBN: 978-1-62708-439-0
... high frequencies ( Ref 44 ). Due to the behavioral dependencies of AM materials on microstructures from manufacturing orientations and other process factors, using high strain rates that induce heating (which impacts the microstructures) could lead to adverse results that are not representative...
Abstract
This article discusses several alternative mechanical test approaches that can be applied to additive manufacturing (AM) materials, both for smaller-scale assessments and for specimens that have been extracted from an AM component. This includes small punch testing, shear punch testing, and small ring testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003254
EISBN: 978-1-62708-176-4
... the deformation response of the metal: strain rate, temperature, nature of loading, stress-corrosion cracking, and presence of notches. mechanical properties ferrous metals nonferrous metals forces deformation fracture mechanisms mechanical testing microstructure strain rate stress-corrosion...
Abstract
Mechanical properties are described as the relationship between forces (or stresses) acting on a material and the resistance of the material to deformation (i.e., strains) and fracture. This article briefly introduces the typical relationships between metallurgical features and the mechanical behavior of metals. It explains the deformation and fracture mechanisms of these metals. Typical properties measured during mechanical testing related to these deformation mechanisms and the microstructures of metals are discussed. The article reviews the various factors that affect the deformation response of the metal: strain rate, temperature, nature of loading, stress-corrosion cracking, and presence of notches.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003294
EISBN: 978-1-62708-176-4
... has two principal advantages. The expanding ring test subjects the material to a state of dynamic uniaxial stress without the wave propagation complications that accompany other high strain rate tests. Also, the maximum strain rate available in the ring test is higher than in any other common tension...
Abstract
This article reviews high strain rate compression and tension test methods with a focus on the general principles, advantages, and limitations of each test method. The compression test methods are cam plastometer test, drop tower compression test, the Hopkinson bar in compression, and rod impact (Taylor) test. The flyer plate impact test, expanding ring test, split-Hopkinson bar in tension, and a test using a rotating wheel used for high strain rate tension are also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003024
EISBN: 978-1-62708-200-6
... are combined to eliminate ε M and ε VK to obtain a single second-order linear differential constitutive equation, which is solved under appropriate boundary conditions. As with the simpler mechanical analogs, the four-parameter element response to constant stress, strain rate, and instantaneous fixed...
Abstract
This article discusses the deformation and viscoelastic characteristics of plastics as polymeric materials, focusing on the test methods used for the evaluation of their mechanical properties, methods available for analytically predicting the deformation response of polymers, and the effect of viscoelasticity on the test methods used. Two common ways of evaluating viscoelasticity of plastics are by means of creep experiments and dynamic mechanical experiments. Graphic or tabular analysis of test data, time-temperature superposition, and empirical correlation methods are commonly employed for analytical prediction of deformation characteristics of polymers.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002366
EISBN: 978-1-62708-193-1
... and ductile structural alloys. crystallographic growth cycle counting grain size high-cycle fatigue low-cycle fatigue multiaxial fatigue strength normal stress-dominated growth small fatigue cracks strain amplitude MOST ENGINEERING DESIGNS and/or failure analyses involve three-dimensional...
Abstract
This article provides information on the typical experimental observations of formation and propagation of small fatigue cracks under various stress states and explores the relation to long crack fracture mixed-mode fracture mechanics. It discusses state I crystallographic and stage II normal stress-dominated growth, along with some observations regarding the influence of combined stress state on the propagation of small cracks. The article discusses the differences between low-cycle fatigue and high-cycle fatigue (HCF) behaviors. Several other features of multiaxial fatigue are also explained, including mean stress effects, sequences of stress/strain amplitude or stress state, nonproportional loading and cycle counting, and HCF fatigue limits. In addition, the article covers the formation and propagation of cracks on the order of several grain sizes in diameter in initially isotropic and ductile structural alloys.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003301
EISBN: 978-1-62708-176-4
... , and 6 ). Model studies show that similar results emerge at high strain rate. Triaxial Hopkinson techniques can be used to simultaneously subject a sample to axial and lateral compressions. The lateral compression may be applied through a pneumatic pressure vessel ( Ref 7 , 8 , and 9...
Abstract
Triaxial Hopkinson techniques can be used to simultaneously subject a sample to axial and lateral compressions. The lateral compression may be applied through a pneumatic pressure vessel or dynamically using a special Hopkinson technique. This article reviews these two techniques in detail. It illustrates a 75-mm Hopkinson system, particularly designed to test large samples of concrete, rock, polymeric composites, and other materials with relatively coarse microstructures. The article also provides information on the pneumatic pressure vessel for a 75-mm Hopkinson bar test system and the dynamic triaxial load cell on a 19-mm Hopkinson bar.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003290
EISBN: 978-1-62708-176-4
... a constant strain rate or constant load rate. Figure 3 shows the response in each case for an initial stress, σ 0 , exceeding the proportional limit. If the stress and temperature are sufficiently high, the extent of nonelastic strain on loading will depend on the loading rate, which will in turn affect...
Abstract
This article discusses stress relaxation testing on metallic materials, as covered by ASTM E 328. It reviews the two types of stress relaxation tests performed in tension, long-term and accelerated testing. The article illustrates load characteristics and data representation for stress relaxation testing used for the most convenient and common uniaxial tensile test. It concludes with information on compression testing, bend testing, torsion testing, and tests on springs.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... deformation before fracture (ductility). Therefore, a complete description of the workability of a material is specified by its flow stress dependence on processing variables (for example, strain, strain rate, preheat temperature, and die temperature), its failure behavior, and the metallurgical...
Abstract
This article provides the definitions of stress and strain, and describes the relationship between stress and strain by stress-strain curves and true-stress/true-strain curves. The emphasis is on understanding the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. The article reviews the process variables that influence the degree of workability and summarizes the mathematical relationships that describe the occurrence of room-temperature ductile fracture under workability conditions. It discusses the most common situations encountered in multiaxial stress states. The construction of a processing map based on deformation mechanisms is also discussed.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002469
EISBN: 978-1-62708-194-8
... the cyclic tests. In this case, the strain rate was cycled between 1.5 × 10 −3 and 1.5 × 10 −5 1/s, which explains the steps in the graph. Fig. 25 Cyclic hardening of annealed type 304 stainless steel: True effective stress (for uniaxial monotonic loading with strain rate cycling between 1.5 × 10 −3...
Abstract
The design of components against fatigue failure may involve several considerations of irregular loading, variable temperature, and environment. This article focuses on design considerations against fatigue related to material performance under mechanical loading at constant temperature. It reviews the traditional methods of fatigue design on smooth and notched components. The article discusses high-cycle fatigue in terms of fatigue strength and tensile strength, mean stress effects, stress concentration, and multiaxial fatigue. It describes low-cycle fatigue in terms of deformation behavior and concludes with a discussion on lifetime analysis based on a strain approach.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003261
EISBN: 978-1-62708-176-4
... uniaxial tension test uniaxial compression test plastic deformation strain tension specimen stress-strain curve ductility notch tensile tests compression tests Tensile load Compressive load Strain Rate THE MECHANICAL BEHAVIOR OF MATERIALS is described by their deformation and fracture...
Abstract
This article focuses on mechanical behavior of materials under conditions of uniaxial tension and compression. The emphasis is on mechanical behavior during the engineering tension test, which is used to provide basic design information on the strength of materials and as an acceptance test for the specification of materials. The article presents mathematical expressions for a flow curve of many metals in the region of uniform plastic deformation. It explains that the rate at which strain is applied to the tension specimen has an important influence on the stress-strain curve. The point of necking at maximum load can be obtained from the true stress-true strain curve by finding the point on the curve having a subtangent of unity. The article concludes with an overview of the ductility measurements performed by notch tensile and compression tests.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003259
EISBN: 978-1-62708-176-4
... of the effect of stress wave propagation along the length of the test specimen in order to determine how fast a uniaxial test can be run to obtain valid stress-strain data. For high loading rates, the strain in the specimen may not be uniform. Figure 5 illustrates an elemental length dx 0 of a tension...
Abstract
The article provides an overview of the various types of testing machines: gear-driven or screw-driven machines and servohydraulic machines. It examines force application systems, force measurement, and strain measurement. The article discusses important instrument considerations and describes gripping techniques of test specimens. It analyzes test diagnostics and reviews the use of computers for gathering and reducing data. Emphasis is placed on universal testing machines with separate discussions of equipment factors for tensile testing and compressing testing. The influence of the machine stiffness on the test results is also described, along with a general assessment of test accuracy, precision, and repeatability of modern equipment.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... of temperature and stress. The uniaxial creep test, typically performed at constant temperature and constant load, generates the following information: Deformation data: Usually presented in terms of uniaxial strain, measured over a gage length, as a function of time. This gives the creep curve...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
1