Skip Nav Destination
Close Modal
Search Results for
high-speed steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1870 Search Results for
high-speed steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 2 Carbide distribution on longitudinal planes of high-speed steels revealed by macroetching discs of varying diameter with 10% nital. (a) M2 tool steel. (b) T1 tool steel. Both ∼1×
More
Image
Published: 01 December 2004
Fig. 39 Carbides in various high-speed steels, both in annealed conditions and after being heated to normal austenitizing temperatures. Open bars represent quantities in annealed steels. Solid bars indicate amounts after austenitizing at hardening temperatures indicated.
More
Image
Published: 01 December 2004
Fig. 68 Sequence of alloy carbide formation in two tungsten-type high-speed steels as a function of tempering temperature. Steel A contains 0.8% C, 18% W, 4% Cr, 2% V, and 10% Co; steel B contains 0.8% C, 9% W, 3% Cr, and 3% Co. Source: Ref 10
More
Image
Published: 31 December 2017
Image
Published: 01 December 1998
Fig. 9 Wear rates for high-speed steels Type or grade Composition, % Total carbide MC-type carbide Hardness, HRC C V T1,M1 0.75 1 29 2 65 M2,M25 0.85 2 28 3 65 M7,M10, M2,M25 1.10 2 26 4 66 M2,M41 1.1 2 28 4.5 67.5 T15 1.5 5 32 10 67.5
More
Image
in Processes and Furnace Equipment for Heat Treating of Tool Steels[1]
> Heat Treating of Irons and Steels
Published: 01 October 2014
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005975
EISBN: 978-1-62708-168-9
... Abstract This article focuses on various heat treatment practices recommended for different types of high-speed tool steels. Commonly used methods include annealing, stress relieving, preheating, austenitizing, quenching, tempering, carburizing, and nitriding. The article describes hardening...
Abstract
This article focuses on various heat treatment practices recommended for different types of high-speed tool steels. Commonly used methods include annealing, stress relieving, preheating, austenitizing, quenching, tempering, carburizing, and nitriding. The article describes hardening for various types of cutting tools, namely, broaches, chasers, milling cutters, drills, taps, reamers, form tools, and hobs, and for thread rolling dies, threading dies, and bearings.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002122
EISBN: 978-1-62708-188-7
... Abstract This article describes procedures for producing powder metallurgy high-speed tool steel powder by inert-gas atomization, followed by compaction by hot isostatic pressing. These include the anti-segregation process (ASP) and the crucible particle metallurgy (CPM) process. The article...
Abstract
This article describes procedures for producing powder metallurgy high-speed tool steel powder by inert-gas atomization, followed by compaction by hot isostatic pressing. These include the anti-segregation process (ASP) and the crucible particle metallurgy (CPM) process. The article reviews the properties of ASP and CPM and summarizes the procedures to heat treat ASP high-speed tool steels. It discusses the processing steps, advantages, and applications of the FULDENS process that uses water-atomized powders compacted by vacuum sintering. The article also provides information on the applications of tool steels.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002121
EISBN: 978-1-62708-188-7
... Abstract This article discusses the classifications of high-speed tool steels and describes alloying elements and their effects on the properties of high-speed tool steels. It analyzes the heat treatment of high-speed tool steels, namely, preheating, austenitizing, quenching, and tempering...
Abstract
This article discusses the classifications of high-speed tool steels and describes alloying elements and their effects on the properties of high-speed tool steels. It analyzes the heat treatment of high-speed tool steels, namely, preheating, austenitizing, quenching, and tempering. Surface treatments for the high-speed tool steels are reviewed. The article emphasizes the properties and applications of high-speed tool steels and provides information on the factors in selecting high-speed tool steels.
Image
Published: 01 January 1989
Fig. 5 Recommended designs of high-speed steel tools for shaping steel and cost iron. Dimensions given in inches
More
Image
Published: 01 January 1989
Fig. 16 High-speed steel wear while turning UNS G10080 steel at 200 m/min (660 sfm). Depth of cut was 1.9 mm (0.74 in.), and feed rate was 0.406 mm/rev (0.0160 in.). Source: Ref 10
More
Image
Published: 01 January 1989
Fig. 22 Average high-speed steel tool wear while machining UNS G11460 steel bars at 40 m/min (130 sfm). Depth of cut was 2 mm (0.08 in.), feed rate was 0.1 mm/rev (0.004 in./rev), and rake angle (α) was 20°. Source: Ref 22
More
Image
Published: 01 January 2002
Fig. 33 Examples of the microstructure of AISI M2 high-speed steel. (a) Desired quenched-and-tempered condition: 1200 °C (2200 °F) for 5 min in salt, oil quench, double temper at 595 °C (1100 °F). Etched with 3% nital. 500×. (b) Grain growth caused by reaustenitizing without annealing: 1220 °C
More
Image
Published: 01 January 1994
Fig. 10 Recommended shapes for carbide and high-speed steel cutting tools used in machining sprayed metal coatings Dimension Carbide High-speed metal a 65–90° 80° b 0° 0 to 15° c 7° 10° d 7° max 7° max e 0–8° max 15° max f 0.79375 mm 0762–1.016 mm
More
Image
Published: 01 December 2004
Fig. 44 Longitudinal section through directionally solidified high-speed steel (AISI T1) that was cooled at 0.23 K/s from above liquidus. The peritectic envelopes of austenite (gray) around the highly branched dendrites of δ-ferrite (discontinuously transformed to austenite and carbide, dark
More
Image
Published: 01 December 2004
Fig. 45 Longitudinal section through directionally solidified high-speed steel (AISI M2 with 1.12% C and 1% Nb) that was cooled at 0.1 K/s to approximately 1320 °C (2410 °F), that is, 20 K below the onset of the peritectic transformation. Note the thicker layers of peritectic austenite
More
Image
Published: 31 December 2017
Fig. 8 Wear rates of 60-40 brass and high-speed steel as a function of sliding speed. The relative wear rate of each metal in the pair depended to a different degree on sliding speed. There was a crossover in relative wear of the metals at approximately 1000 cm/s (400 in./s). Source: Ref 1
More
Image
Published: 01 December 1998
Image
Published: 30 August 2021
Fig. 33 Examples of the microstructure of AISI M2 high-speed steel. (a) Desired quenched-and-tempered condition: 1200 °C (2200 °F) for 5 min in salt, oil quench, double temper at 595 °C (1100 °F). Etched with 3% nital. Original magnification: 500×. (b) Grain growth caused by reaustenitizing
More
Image
Published: 30 September 2015
Fig. 18 Three-point bending strength of conventional M2 high-speed steel at 64 to 65 HRC as affected by degree of hot working and loading direction
More
1