1-20 of 569 Search Results for

high-silicon gray iron

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005328
EISBN: 978-1-62708-187-0
... Abstract This article discusses the melting and pouring practices, heat treatment, and applications of different types of high-alloy graphitic iron, namely, high-silicon gray irons, high-silicon ductile irons, nickel-alloyed austenitic irons, austenitic gray irons, austenitic ductile irons...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005970
EISBN: 978-1-62708-168-9
..., including austenitic gray irons and austenitic ductile irons. It also provides a discussion on the heat treatment of high-silicon irons for heat resisting and corrosion resisting applications. austenitic ductile iron austenitic gray iron corrosion resistance heat treatment high-alloy graphitic...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005294
EISBN: 978-1-62708-187-0
... Abstract This article reviews the production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the molten metal treatments for high-silicon gray, high-nickel ductile, and malleable...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006332
EISBN: 978-1-62708-179-5
... be allowed to cool before cleaning. They do exhibit a ductility trough in the temperature range of 315 to 425 °C (600 to 800 °F), and riser and gate removal is aided when performed upon cooling through this temperature range. High-Silicon Gray Irons Composition For corrosion resistance, these irons...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003111
EISBN: 978-1-62708-199-3
...–36 1.0–5.5 1.0 … A High-resistant gray irons Medium-silicon iron (i) 1.6–2.5 0.4–0.8 0.30 0.10 4.0–7.0 … … … … F Nickel-chromium iron (g) 1.8–3.0 0.4–1.5 0.15 0.15 1.0–2.75 13.5–36 1.8–6.0 1.0 7.5 A Nickel-chromium-silicon iron (j) 1.8–2.6 0.4–1.0 0.10...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001006
EISBN: 978-1-62708-161-0
... irons, and heat-resistant cast irons. This article discusses abrasion-resistant chilled and white irons, high-alloy corrosion-resistant irons, and medium-alloy and high-alloy heat-resistant gray and ductile irons. The article outlines in a list the approximate ranges of alloy content for various types...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006341
EISBN: 978-1-62708-179-5
... (also called Ni-Resist irons) and the high-silicon (14.5% Si) gray irons. The alloyed irons produced for elevated-temperature service are the nickel-alloyed gray and ductile irons, the high-silicon (4 to 6% Si) gray and ductile irons, and the aluminum-alloyed gray and ductile irons. The 4 to 6% Si...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.9781627081795
EISBN: 978-1-62708-179-5
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
.... Relatively small amounts of molybdenum and/or chromium can be added in combination with high silicon. The addition of nickel to gray iron improves resistance to reducing acids and provides high resistance to caustic alkalis. Chromium assists in forming a protective oxide that resists oxidizing acids...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003810
EISBN: 978-1-62708-183-2
... in both gray cast irons and high-silicon cast irons, which have flake graphite morphologies. It is not seen in ductile cast irons that have nodular graphite shapes. Resistance to Corrosive Environments No single grade of cast iron will resist all corrosive environments. However, a cast iron can...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006308
EISBN: 978-1-62708-179-5
... is the main parameter affecting the mechanical properties of gray iron. With the exception of class 20 iron, which is eutectic, all of the others are hypoeutectic. A high carbon and silicon content increases the graphitization potential of the iron, as well as its castability. Although increasing the carbon...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006324
EISBN: 978-1-62708-179-5
... with ferritic and martensitic matrices is usually slightly higher than for pearlitic irons ( Ref 45 , 46 ). A bainitic structure also has a higher thermal expansion. Silicon, aluminum, and copper increase the expansion coefficient slightly in both pearlitic and ferritic gray irons ( Ref 1 , 46 ). At high...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003106
EISBN: 978-1-62708-199-3
... Abstract Cast irons primarily are iron alloys that contain more than 2% carbon and from 1 to 3% silicon. This article provides a description of iron-iron carbide-silicon system; and discusses the classification, composition, and characteristics of cast irons, such as gray, ductile, malleable...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007035
EISBN: 978-1-62708-387-4
.... The typical microstructure of gray iron is a matrix of pearlite with graphite flakes dispersed throughout. Too-rapid cooling (depending on the carbon and silicon contents) produces mottled iron, which consists of a pearlite matrix with both primary cementite (iron carbide) and graphite. Very slow cooling...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006296
EISBN: 978-1-62708-179-5
... Influence of silicon content on the critical temperature range of malleable, gray, and ductile irons when cooled at 5 °C (9 °F) per h. Courtesy of the American Foundry Society. Source: Ref 6 Effect of four elements on critical temperature range of cast irons Table 1 Effect of four elements...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005322
EISBN: 978-1-62708-187-0
... by the addition of chromium, nickel, molybdenum, silicon, aluminum, and/or copper. Minor amounts of various elements are also important in controlling the casting microstructure and resultant properties. For example, inoculants are used to control graphite type and size in gray and ductile irons; bismuth...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
... gray and white iron ASTM A436 Austenitic gray iron castings ASTM A518 Corrosion-resistant high-silicon iron castings ASTM A532 Abrasion-resistant white iron castings Compacted graphite iron ASTM A842 Compacted graphite iron castings Malleable iron ASTM A47, ASME SA47 Ferritic...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005945
EISBN: 978-1-62708-168-9
... irons. These include gray iron, ductile iron, compacted graphite iron, white iron, malleable iron, and high-alloy iron. The article describes how to control temperature and atmosphere during the heat treatment of the iron castings. annealing atmosphere control cast iron compacted graphite iron...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005942
EISBN: 978-1-62708-168-9
... microstructure of gray iron is a matrix of pearlite with the graphite flakes dispersed throughout. In terms of composition, gray irons usually contain 2.5 to 4% C, 1 to 3% Si, and additions of manganese, depending on the desired microstructure (as low as 0.1% Mn in ferritic gray irons and as high as 1.2...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006321
EISBN: 978-1-62708-179-5
... as 0.1% Mn in ferritic gray irons and as high as 1.2% in pearlitic). Other alloying elements include nickel, copper, molybdenum, and chromium. The heat treatment of gray irons can considerably alter the matrix microstructure with little or no effect on the size and shape of the graphite achieved...