Skip Nav Destination
Close Modal
Search Results for
high-purity water
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 614 Search Results for
high-purity water
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004103
EISBN: 978-1-62708-184-9
... Abstract Materials of construction for equipment and piping in pharmaceutical processing plants must be resistant to corrosion from the high-purity water, the buffer solutions used in preparation of the products, and the cleaning solutions used to maintain the purity of the product. The primary...
Abstract
Materials of construction for equipment and piping in pharmaceutical processing plants must be resistant to corrosion from the high-purity water, the buffer solutions used in preparation of the products, and the cleaning solutions used to maintain the purity of the product. The primary water used in pharmaceutical production is water for injection (WFI). This article presents the steps for preparing WFI and discusses the effect of chlorides on stainless steel. It provides information on the passive layer of stainless steels and chromium-containing nickel alloys. The article provides information on the surface finish of pharmaceutical equipment. It discusses the classification of rouge and the characteristics of cast type 316L stainless steel. The article also explains how and when to perform cleaning and repassivation process on classes of rouge.
Image
Published: 15 December 2019
Fig. 8 Gradient separation of anions commonly found in high-purity water with the IonPac AS11 column and the AG11 column. Column dimensions: 2 mm (0.08 in.) ID by 50 mm and 2 mm ID by 250 mm; eluent: 0.5 mM hydroxide for the first 2.5 min, 0.5 to 5 mM hydroxide from 2.5 min to 6 min, and 5
More
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
... that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled...
Abstract
This article describes the four major conditions that can cause beryllium to corrode in air. These include beryllium carbide particles exposed at the surface; surface contaminated with halide, sulfate, or nitrate ions; surface contaminated with other electrolyte fluids; and atmosphere that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled elements and major impurities are tabulated. The article discusses the in-process problems and procedures that are common but avoidable when processing beryllium and aluminum-beryllium composites. It also describes the types of coatings used on beryllium and aluminum-beryllium. These include chemical conversion coatings, anodized coatings, plated coatings, organic coatings, and plasma-sprayed coatings.
Image
Published: 01 January 1996
environments can vary substantially in the environment. Source: Ref 8 , 9 . (b) Effect of stress ratio on corrosion fatigue crack propagation in A533B and A508 carbon steels exposed to pressurized high-purity water. Temperature 288 °C (550 °F), frequency 0.017 Hz. Average behavior in air is represented
More
Image
Published: 30 September 2015
Fig. 2 Effect of compacting pressure and die temperature on (a) green density and (b) green strength of a high purity water atomized iron powder (0.004 wt% C, 0.09 wt% O, 0.05 wt% Mn). Source: Ref 1
More
Image
Published: 01 January 2003
Fig. 15 Effect of stress ratio ( R ) on corrosion-fatigue crack propagation in ASTM A533 B and A508 carbon steels exposed to pressurized high-purity water at 288 °C (550 °F). Frequency: 0.017 Hz. Average behavior in air is represented by the dashed line labeled “Dry.” Source: Ref 59
More
Image
Published: 01 January 2002
Fig. 31 Power plant gate-valve stem of 17-4 PH stainless that failed by SCC in high-purity water. (a) A fracture surface of the valve stem showing stained area and cup-and-cone shearing at perimeter. 0.7×. (b) Micrograph showing secondary intergranular cracks branching from fracture surface
More
Image
Published: 01 January 1996
Fig. 17 The effect of dissolved oxygen on the corrosion potential of type 304 stainless steel in 274 °C high-purity water. Important effects on corrosion potential and crack growth rate ( Fig. 18 ) occur at ppb levels of dissolved oxygen, a small fraction of the oxygen-saturated value of ≈42
More
Image
Published: 15 January 2021
Fig. 40 Stress-corrosion cracking in a 17-4 PH stainless steel gate-valve stem that failed in high-purity water. (a) Photograph of the valve stem fracture surface showing stained area and cup-and-cone shearing at perimeter. (b) Micrograph showing secondary intergranular cracks branching from
More
Image
Published: 01 January 1996
Fig. 17 Concentration ranges of dissolved oxygen and chloride that may lead to SCC of type 304 in high-purity water at temperatures ranging from 260 to 300 °C (500 to 570 °F). The applied stresses are greater than the yield strength and test times are greater than 1000 h, or strain rates
More
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000622
EISBN: 978-1-62708-181-8
..., and D.J. Duquette, Rensselaer Polytechnic Institute) Fig. 1097, 1098 Corrosion-fatigue crack initiation and propagation in a solution-treated and peak-aged Al-4.2Mg-2.1Li P/M alloy tested in deaerated high-purity water. Fig. 1097 : View of external surface (top) and fracture surface (bottom). SEM...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of P/M aluminum alloys (aluminum-lithium alloys) and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fracture surface, and corrosion-fatigue crack initiation and propagation of these alloys.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004203
EISBN: 978-1-62708-184-9
... of particular interest to the pharmaceutical industry. It is the presence of a surface layer of oxide on stainless equipment or piping typically handling high-purity water at temperatures above ambient. This includes stills, steam systems, purified water, and water for injection. The oxides can vary...
Abstract
This article discusses the corrosion characteristics of superaustenitic stainless and duplex stainless steels, which are used in pharmaceutical industry. It describes passivation treatments and the electropolishing of stainless steels. The article informs that electropolishing is not a passivation treatment, although the proper execution of the process will result in a passive surface. The article concludes with a discussion on roughing, which is a phenomenon of particular interest to the pharmaceutical industry.
Book Chapter
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004204
EISBN: 978-1-62708-184-9
... fabrication. Fortunately, problems can be minimized by following good design, procurement, fabrication, handling, and cleanup practices. Austenitic stainless steels are widely used in oxidizing environments, high-purity water service, and in fine chemical and pharmaceutical production equipment and piping...
Abstract
This article discusses the materials of construction found in pharmaceutical production facilities. The materials discussed are different stainless steels, nickel and nickel-base alloys, titanium, zirconium, impervious graphite, fluoropolymers, and glass-lined steel. The article describes the three primary causes of failure in the manufacture of pharmaceuticals: embedded iron, failures of glass linings, and corrosion under thermal insulation.
Image
Published: 01 January 1996
to both commercial and high-purity bars by solution annealing at 460 °C (860 °F) for 1 h, water quenching, aging at 100 °C (212 °F) for 1 h, swaging at room temperature, and aging at 120 °C (250 °F) for 16 h. The commercial alloy, C7075-TMT, was reduced 30% in cross section, whereas the high-purity alloy
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
...% Sn and maximum residual impurities of 0.04% Sb, 0.05% As, 0.030% Bi, 0.001% Cd, 0.04% Cu, 0.010% Fe, 0.05% Pb, 0.01% S, 0.005% Zn, and 0.01% (Ni + Co). There are only a few applications where pure tin is used. Unalloyed tin is the most practical lining material for handling high-purity water...
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and secondary production of tin and explains the uses of tin in coating, namely tinplating, electroplating, and hot dip coatings. It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid alloys, type metals, copper alloys, dental alloys, cast irons, titanium alloys, and zirconium alloys. Finally, it presents a short note on the applications of tin powder and corrosion resistance of tin.