Skip Nav Destination
Close Modal
Search Results for
high-purity water
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 579 Search Results for
high-purity water
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004103
EISBN: 978-1-62708-184-9
...Abstract Abstract Materials of construction for equipment and piping in pharmaceutical processing plants must be resistant to corrosion from the high-purity water, the buffer solutions used in preparation of the products, and the cleaning solutions used to maintain the purity of the product...
Abstract
Materials of construction for equipment and piping in pharmaceutical processing plants must be resistant to corrosion from the high-purity water, the buffer solutions used in preparation of the products, and the cleaning solutions used to maintain the purity of the product. The primary water used in pharmaceutical production is water for injection (WFI). This article presents the steps for preparing WFI and discusses the effect of chlorides on stainless steel. It provides information on the passive layer of stainless steels and chromium-containing nickel alloys. The article provides information on the surface finish of pharmaceutical equipment. It discusses the classification of rouge and the characteristics of cast type 316L stainless steel. The article also explains how and when to perform cleaning and repassivation process on classes of rouge.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
...; and atmosphere that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally...
Abstract
This article describes the four major conditions that can cause beryllium to corrode in air. These include beryllium carbide particles exposed at the surface; surface contaminated with halide, sulfate, or nitrate ions; surface contaminated with other electrolyte fluids; and atmosphere that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled elements and major impurities are tabulated. The article discusses the in-process problems and procedures that are common but avoidable when processing beryllium and aluminum-beryllium composites. It also describes the types of coatings used on beryllium and aluminum-beryllium. These include chemical conversion coatings, anodized coatings, plated coatings, organic coatings, and plasma-sprayed coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004203
EISBN: 978-1-62708-184-9
... of particular interest to the pharmaceutical industry. It is the presence of a surface layer of oxide on stainless equipment or piping typically handling high-purity water at temperatures above ambient. This includes stills, steam systems, purified water, and water for injection. The oxides can vary...
Abstract
This article discusses the corrosion characteristics of superaustenitic stainless and duplex stainless steels, which are used in pharmaceutical industry. It describes passivation treatments and the electropolishing of stainless steels. The article informs that electropolishing is not a passivation treatment, although the proper execution of the process will result in a passive surface. The article concludes with a discussion on roughing, which is a phenomenon of particular interest to the pharmaceutical industry.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000622
EISBN: 978-1-62708-181-8
... and propagation of these alloys. Fig. 1097, 1098 Corrosion-fatigue crack initiation and propagation in a solution-treated and peak-aged Al-4.2Mg-2.1Li P/M alloy tested in deaerated high-purity water. Fig. 1097 : View of external surface (top) and fracture surface (bottom). SEM, 500×. Fig. 1098 : Higher...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of P/M aluminum alloys (aluminum-lithium alloys) and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fracture surface, and corrosion-fatigue crack initiation and propagation of these alloys.
Book Chapter
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004204
EISBN: 978-1-62708-184-9
... fabrication. Fortunately, problems can be minimized by following good design, procurement, fabrication, handling, and cleanup practices. Austenitic stainless steels are widely used in oxidizing environments, high-purity water service, and in fine chemical and pharmaceutical production equipment and piping...
Abstract
This article discusses the materials of construction found in pharmaceutical production facilities. The materials discussed are different stainless steels, nickel and nickel-base alloys, titanium, zirconium, impervious graphite, fluoropolymers, and glass-lined steel. The article describes the three primary causes of failure in the manufacture of pharmaceuticals: embedded iron, failures of glass linings, and corrosion under thermal insulation.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003815
EISBN: 978-1-62708-183-2
... in solutions having high electrical resistivity, such as high-purity water, but some semiconductors, such as graphite and magnetite, are cathodic to aluminum, and when in contact with them, aluminum corrodes sacrificially. Alclad Products In alclad products, the difference in solution potential between...
Abstract
This article focuses on the various forms of corrosion that occur in the passive range of aluminum and its alloys. It discusses pitting corrosion, galvanic corrosion, deposition corrosion, intergranular corrosion, stress-corrosion cracking, exfoliation corrosion, corrosion fatigue, erosion-corrosion, atmospheric corrosion, filiform corrosion, and corrosion in water and soils. The article describes the effects of composition, microstructure, stress-intensity factor, and nonmetallic building materials on the corrosion behavior of aluminum and its alloys. It also provides information on the corrosion resistance of anodized aluminum in contact with foods, pharmaceuticals, and chemicals.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006630
EISBN: 978-1-62708-213-6
... of potassium hydroxide. Courtesy of Thermo Fisher Scientific Fig. 8 Gradient separation of anions commonly found in high-purity water with the IonPac AS11 column and the AG11 column. Column dimensions: 2 mm (0.08 in.) ID by 50 mm and 2 mm ID by 250 mm; eluent: 0.5 mM hydroxide for the first 2.5 min...
Abstract
This article presents a detailed account of ion chromatography (IC). It begins by describing the principles of common separation modes in IC. This is followed by a section on the different modes of detection, namely suppressed conductivity detection, nonsuppressed conductivity detection, spectrophotometric detection, and electrochemical detection. Various separation modes in IC are then described. The article further provides information on various eluents species, analyte range, and sample preparation techniques in IC. It ends by providing information on the instrumentation and applications and future directions of IC.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006546
EISBN: 978-1-62708-210-5
..., such as high-purity water, but some semiconductors, such a