1-20 of 386 Search Results for

high-pressure steam piping

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004133
EISBN: 978-1-62708-184-9
...) and ultrasupercritical (USC) power plants. These components include high-pressure steam piping and headers, superheater and reheater tubing, water wall tubing in the boiler, high-and intermediate-pressure rotors, rotating blades, and bolts in the turbine section. The article reviews the boiler alloys, used in SC and USC...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004154
EISBN: 978-1-62708-184-9
...-accelerated corrosion oxygen pitting chelant corrosion acid corrosion phosphate corrosion corrosion-assisted cracking HIGH-TEMPERATURE WATER AND STEAM react with boiler steel to form oxides, hydroxides, hydrates, and hydrogen, but formation of a protective oxide layer, such as magnetite (Fe 3 O 4...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004223
EISBN: 978-1-62708-184-9
... that the primary structural materials used in the fabrication of the nuclear steam supply system—stainless steels and nickel-base alloys—were characterized by very high general corrosion resistance in high-purity, high-temperature LWR-type environments. The problem was that the “qualifying” laboratory tests did...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
... , 36 , 37 ). In addition, there is water droplet erosion of last rows of LP turbine blades ( Ref 2 , 3 , 6 , 29 , 38 ) and solid-particle erosion in the high-pressure and intermediate-pressure turbines and turbine valves caused by exfoliation of oxides in superheaters, reheaters, and steam piping...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004143
EISBN: 978-1-62708-184-9
..., the location of the steam-injection point should not lead to localized overheating. Ideally, steam heating of the solvent should occur by steam injection in temporary circulation piping or by use of a temporary heat exchanger. High temperature can also increase corrosion in the vapor space. Foam Cleaning...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
..., and fouling, and fabrication defects, which include most incidents of poor workmanship, improper material, and defective material, together account for more than 75% of all failures of steam-power-plant equipment. Most steam-generator failures occur in pressurized components, that is, the tubing, piping...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... to wrought Monel pipe. Metallographic examination disclosed many small microfissures in the weld metal, but no microfissures were found in the HAZs of the wrought Monel. This section of line contained high thermal stresses that resulted from injection of steam a short distance upstream from the coupling...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
..., which has not been fully understood in literature because the microscale, high-speed, complex phenomenon is difficult to analyze experimentally. Initiation of Erosion When the impact pressure on the wall material becomes greater than the yield stress of the material, and fatigue is promoted...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003328
EISBN: 978-1-62708-176-4
... for nuclear power plant components ( Ref 1 ) and Section VIII for the construction of pressure vessels ( Ref 2 )—and the ASME Code for Pressure Piping (B31) ( Ref 3 ) In Germany, the Technical Rules for Steam Boilers (TRD) ( Ref 4 ), the Technical Rules for Pressure Vessels (AD-Rules) ( Ref 5...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
..., injector nozzles, and piping. Abrupt angular changes in direction of fluid flow, low-pressure pockets, obstruction to smooth flow, and any other feature that can cause localized high velocities or turbulence of the circulating water should be minimized as much as possible. Sacrificial impingement baffles...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... is exposed to hydrogen at high pressures and temperatures. The piping system was completely surveyed to ensure that only the specified metal was used. Replacements were made when the wrong metal was found. Fig. 3 Specimen from a low-carbon steel nipple showing fissuring at grain boundaries (top...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis. failure analysis finite element analysis impact...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... are not significant factors; loading, because it is opposed by the internal pressure, is so low that tubes with a high allowable stress are not required. Similar considerations are required for other types of heat- or condenser-exchanger designs, such as the plate and double-pipe heat exchangers. These types are also...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004152
EISBN: 978-1-62708-184-9
... sections. In electric utility deaerators, turbine extraction steam is used. The deaerator is located between the low-pressure and high-pressure feedwater heaters. In industrial steam cycles, main or hot reheat steam is used for deaeration. In combined cycle units, low-pressure boiler steam is often used...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... and microelectromechanical systems (MEMS) analysis. Pipe Stress and Pressure Vessel Analysis Piping and pressure vessel design is an area where specific analyses are needed to assure the safety of all types of conditions, including high-pressure, high- and low-temperature, and hazardous materials. These analyses must...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004146
EISBN: 978-1-62708-184-9
... reactors pitting pressurized water reactor high-strength stainless steels primary water circuits secondary water circuits steam generator denting external bolting corrosion primary circuit radiation fields A PRESSURIZED WATER REACTOR (PWR) is a type of nuclear reactor that uses ordinary light...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002402
EISBN: 978-1-62708-193-1
... properties comparable to those of 2 1 4 Cr-1Mo steel, but improved resistance to hydrogen attack. Recently, 2 1 4 Cr-1Mo and 3Cr-1Mo steels with vanadium additions have been commercially developed for high-temperature pressure vessels and piping ( Ref 3 , 4 , 5 , 6 , 7 , 8...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003096
EISBN: 978-1-62708-199-3
... pipe piles A 333 (a) Welded and seamless steel pipe for low-temperature service A 335 (a) Seamless ferritic alloy steel pipe for high-temperature service A 381 Double submerged-arc welded steel pipe for high-pressure transmission systems A 405 Seamless ferritic alloy steel pipe...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... cracking Alloy Environment Carbon steel Hot nitrate, hydroxide, and carbonate/bicarbonate solutions High-strength steels Aqueous electrolytes, particularly when containing H 2 S Austenitic stainless steels Hot, concentrated chloride solutions; chloride-contaminated steam; hot...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... microjet within the pit. Among the components most susceptible to liquid impingement erosion are low-pressure turbine blades, low-temperature steam piping, and condenser or other heat-exchanger tubes that are subjected to direct impingement by wet steam. Liquid impingement erosion in tubing...