Skip Nav Destination
Close Modal
Search Results for
high-power turbine blades
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 337 Search Results for
high-power turbine blades
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005737
EISBN: 978-1-62708-171-9
... airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost. aerospace engines combustors gas turbines high-power turbine blades high-pressure compressors...
Abstract
This article provides an overview of key thermal spray coatings used in compressors, combustors, and turbine sections of a power-generation gas turbine. It describes the critical components, including combustors, transition ducts, inlet nozzle guide vanes, and first-stage rotating airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
... transfer flow and thermodynamics physical shape THE STEAM TURBINE (see Fig. 1 ) is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. As the steam expands, it acquires high velocity and exerts force on the turbine blades. Turbines range in size...
Abstract
The steam turbine is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. This article discusses the primary corrosion mechanisms such as corrosion fatigue, stress-corrosion cracking (SCC), pitting, corrosion, and erosion-corrosion, in steam turbines. It illustrates the various causes of the corrosiveness of the steam turbine environments through a Mollier diagram. The article describes the four parts of design disciplines that affect turbine corrosion, namely, mechanical design, heat transfer, flow and thermodynamics, and physical shape. It lists the ways to control the steam and surface chemistry, and design and material improvements to minimize turbine corrosion.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004133
EISBN: 978-1-62708-184-9
...) and ultrasupercritical (USC) power plants. These components include high-pressure steam piping and headers, superheater and reheater tubing, water wall tubing in the boiler, high-and intermediate-pressure rotors, rotating blades, and bolts in the turbine section. The article reviews the boiler alloys, used in SC and USC...
Abstract
This article describes the control of water chemistry in the steam cycle of a power plant for achieving corrosion control, deposition prevention, and higher cycle efficiency. It discusses the materials requirements of the components exposed to supercritical water in supercritical (SC) and ultrasupercritical (USC) power plants. These components include high-pressure steam piping and headers, superheater and reheater tubing, water wall tubing in the boiler, high-and intermediate-pressure rotors, rotating blades, and bolts in the turbine section. The article reviews the boiler alloys, used in SC and USC boilers, such as ferritic steels, austenitic steels, and nickel-base alloys. It provides information on the materials used in turbine applications such as ferritic rotor steels, turbine blade alloys, and bolting materials. The article explains various factors influencing steamside corrosion in SC power plants. It also deals with the role of overall efficiency in the USC power generation.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
..., and manufacturing and repair deficiencies. failure analysis gas turbines steam turbine blades turbine components INDUSTRIAL GAS TURBINES convert chemical energy from fuel into mechanical energy, powering a range of utilities and industrial processes. The reliable operation of these turbines has...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... turbines mechanical properties nickel-base superalloys turbine sections compressor steam production corrosion forms high-temperature environmental attack INDUSTRIAL GAS TURBINES are used in a variety of industries to generate electricity, produce steam, and provide mechanical shaft power...
Abstract
The corrosion issues in the compressor, combustor and turbine sections of industrial gas turbines used in steam production generally depend on the quality of the fuel, air, and water used in the engine than on the specific industrial application. This article focuses on the forms of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion are predominant. The effect of high-temperature oxidation and hot corrosion on the mechanical properties of superalloys is also discussed.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006428
EISBN: 978-1-62708-192-4
... to improve performance and operability of gas and steam turbines. friction gas turbines steam turbines wear Gas and steam turbines represent the cornerstone in thermal power generation, contributing to more than 60% of the power generated across the world. Power generated from such turbine...
Abstract
This article illustrates typical wear and friction issues encountered in gas and steam turbines and their consequences as well as commonly adopted materials solutions. It contains tables that present the summary of wear and friction related issues encountered in steam turbines and gas turbines. The article outlines the differences in the operating conditions and the nature of the components involved in gas and steam turbines. It discusses the constraints and applicable coating solutions for wear and friction issues, and concludes with a broad set of challenges that need to be addressed to improve performance and operability of gas and steam turbines.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007019
EISBN: 978-1-62708-439-0
... and Modular Enabled Rotor Blades and Integrated Composites Assembly (AMERICA)” is also funded by the DOE. It is being led by GE and partners ORNL, NREL, and LM Wind Power. The goal of this project is to develop and demonstrate an integrated AM process for novel, high-performance blade designs for large rotors...
Abstract
Nuclear energy harnesses the power of atomic interactions, whether through the fission of large nuclei or the fusion of light elements. Additive manufacturing (AM) can play several roles in this sector and is actively being researched and applied, although challenges remain. This article provides a discussion of the opportunities, challenges, and example use cases of AM in the nuclear and wind energy sectors.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
... labyrinth seals are common in high- and low-pressure turbine applications. The third main type of sealing system is unshrouded (or open-tip) blade seals ( Fig. 1c ), in which a blade tip cuts directly into a softer abradable material counterpart that is attached to a compressor or turbine casing...
Abstract
This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric plasma-sprayed abradable powders. Three classic examples of flame spray abradables are nickel-graphite powders, NiCrAl-bentonite powders, and NiCrFeAl-boron nitride powders. The article provides information on various abradable coating testing procedures, namely, abradable incursion testing; aging, corrosion, thermal cycle and thermal shock testing; hardness testing; and erosion resistance testing.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... Abstract High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature...
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001051
EISBN: 978-1-62708-161-0
... temperature and increased stage loading result in fewer parts, shorter engine lengths, and reduced weight. Engine operating costs can be reduced if higher temperatures are possible without increasing part life-cycle costs. Critical turbine components include high-pressure turbine blades, vanes, and disks...
Abstract
Directionally solidified (DS) and single-crystal (SX) superalloys and process technology are contributing to significant advances in turbine engine efficiency and durability. These gains are expected to arise from the development of higher creep strength and improved oxidation-resistant SX alloy compositions as well as from the development of SX casting and fabrication technology to utilize advanced transpiration-cooling schemes. This article provides a detailed discussion on the chemistry and castability of first- and second-generation DS and SX superalloys. It summarizes the chemistry modifications applied to MAR-M 247 to develop CMSX-2 with respect to function and objectives. The article also lists the nominal compositions of first- and second-generation DS and SX superalloys.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
.... Affected Systems and Materials Material degradation by liquid-droplet erosion is a significant problem in just a few kinds of engineering systems: blades in the low-pressure ends of steam turbines where the steam is “wet,” and aircraft, missiles, and helicopter rotors flying at high speeds through...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... such as rain erosion of solid materials, gas turbine blades, wind turbine blades, airplane components, and pipe-wall thinning in nuclear/fossil power plants. Because of the fundamental interest in the mechanics of fluids and solids, this topic has been reviewed by Heymann ( Ref 1 ) and Richman ( Ref 2...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006378
EISBN: 978-1-62708-192-4
... an issue for engineers in the power-generation sector. Steam Turbine Blade Erosion Moisture erosion of low-pressure blades has been a problem throughout steam turbine history and remains a concern today (2017). In the last stages of the low-pressure turbine, the steam expands to well below...
Abstract
Liquid impingement erosion has been defined as progressive loss of original material from a solid surface due to continued exposure to impacts by liquid drops or jets. This article focuses on the core nature of erosion by liquid impingement, due to the greater appreciation of the distinctions between the different forms of erosion. It discusses steam turbine blade erosion, aircraft rain erosion, and rain erosion of wind turbine blades. The article describes the mechanisms of liquid impact erosion and time dependence of erosion rate. It reviews critical empirical observations regarding both impingement variables (velocity, impact angle, droplet size, and physical properties of liquids) and erosion resistance of materials, including the correlation between erosion resistance and mechanical properties and the effects of alloying elements and microstructure. The article also provides information on the ways to combat erosion.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
.... Test experience in high-speed, high-temperature rigs and in full engine testing, as well as design/manufacturing experiences, have shown that there are major areas of concern in a gas turbine that uses monolithic ceramic components: Foreign object damage High-speed blade tip rubs High...
Abstract
The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine wheels, ceramic valves, and sliding parts.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005708
EISBN: 978-1-62708-171-9
.... Similar requirements for corrosion protection also are essential for other techniques used to convert energy from seawater, for example, the exploitation of tidal stream, wave power, or ocean thermal energy. Average wind turbine sizes also have increased, with some manufacturers launching 5 MW...
Abstract
The use of renewable energy has grown strongly in all end-use sectors such as power, heat, and transport. This article describes thermal spray applications that improve efficiency, lower maintenance costs, and prolong operational life in the renewable energy technologies, including wind power, hydro power, biomass and biofuels, solar energy, and fuel cells.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007007
EISBN: 978-1-62708-450-5
... flow impellers have multiple flat blades mounted parallel to the axis of the mixing shaft. The blades can be attached to a disc, forming a closed impeller, or a simple hub, making a more open style impeller. Impellers of this type have high power numbers (N P ) and low flow-to-power ratio ( Q/P...
Abstract
The role of a mixer/agitator in quenching applications is to control the mixing environment in order to meet the process criteria. This article provides the basic fundamentals of the sizing of agitators, tank geometry importance, and other considerations for the application of agitators in quench tanks. It also discusses the differing methods for the sizing and selection of agitators for quench tank applications.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
..., as in a jet or rotary pump, vapor bubbles collapse at high-pressure areas and destroy the protective film on the metal surface or disrupt the metal itself. Cavitation erosion occurs typically on rotors or pumps, on the trailing faces of propellers and of water turbine blades, and on the water-cooled side...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002164
EISBN: 978-1-62708-188-7
..., including turbine blade cooling holes, turbine vane cooling holes, turbine disk cooling passages, oil passages, and fuel nozzles. It describes the limitations and advantages of the STEM process. The article discusses the various tool parts of the STEM system, including the holding fixture, guide...
Abstract
Shaped tube electrolytic machining (STEM) is a modified electrochemical machining (ECM) process that uses an acid electrolyte so that the removed metal goes into the solution instead of forming a precipitate. This article lists some specific machining applications of the STEM process, including turbine blade cooling holes, turbine vane cooling holes, turbine disk cooling passages, oil passages, and fuel nozzles. It describes the limitations and advantages of the STEM process. The article discusses the various tool parts of the STEM system, including the holding fixture, guide for cathodes, cathodes, and cathode holder/manifold. The article concludes with information on the process parameters of the STEM system.
Book Chapter
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004221
EISBN: 978-1-62708-184-9
... from high-temperature corrosion and in maintaining mechanical strength at these elevated temperatures. The tip of an industrial gas turbine blade ( Fig. 27 ) is subjected to a combination of environmental and mechanical stress. High-temperature oxidation can be protective or not, depending on the oxide...
Abstract
This article includes a collection of color images that aid in the identification and classification of forms of corrosion in industries and environments. It emphasizes the negative aspects of corrosion and examines the cost and the effort to test, evaluate, simulate, and prevent corrosion. The ability of corrosion to undo the best complex engineered systems has been documented.
1