1-20 of 1026

Search Results for high-performance austenitic alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By Michael Davies
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004184
EISBN: 978-1-62708-184-9
.... It describes the corrosion effects of caustic soda on aluminum and aluminum alloys, iron and steel, carbon and low-alloy steels, stainless steels, high-performance austenitic alloys, nickel and nickel alloys, copper and copper alloys, titanium and titanium alloys, and zirconium and zirconium alloys...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005982
EISBN: 978-1-62708-168-9
..., and the formation and causes of microcracks. The article discusses the effects of alloying elements on hardenability, the effects of excessive retained austenite and massive carbides on fatigue resistance, the effects of residual stresses and internal oxidation on fatigue performance of carburized steels...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007029
EISBN: 978-1-62708-387-4
... are frequently the root cause of tool steel failures ( Ref 1 – 3 ). The heat treatment of these alloys is a critical step in their processing, and if it is performed incorrectly it can have a profound impact on performance. Issues that can arise during heat treatment may include overheating during austenitizing...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003617
EISBN: 978-1-62708-182-5
... the presence of σ/χ phase. High-Performance Stainless Steels In the 1980s and 1990s, more highly alloyed grades of austenitic, ferritic, and duplex stainless steel were developed. These grades provide improved corrosion resistance and higher strength levels compared to commodity grades such as type 304...
Book Chapter

By George Krauss
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002400
EISBN: 978-1-62708-193-1
... Abstract Bending fatigue of carburized steel components is a result of cyclic mechanical loading. This article reviews the alloying and processing factors that influence the microstructures and bending fatigue performance of carburized steels. These include austenitic grain size, surface...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005885
EISBN: 978-1-62708-167-2
... Abstract This article focuses on the specific features of carbon steels and alloy steels that are pertinent to heating by induction for warm and hot working processes. It provides a detailed account of the effects of various microstructures on austenitization kinetics for AISI 1045 steels...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006305
EISBN: 978-1-62708-179-5
... of the Hardness of the Martensitic Structures in High-Chromium Ferrous Alloys and the Control and Transformation of Retained Austenite,” Publication M-399E, Climax Molybdenum Company , 1984 6. Dodd J. and Parks J. L. , “Factors Affecting the Production and Performance of Thick Section High...
Book Chapter

Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005988
EISBN: 978-1-62708-168-9
... and Transformation of Retained Austenite,” Publication M-399E, Climax Molybdenum Company , 1984 5. Dodd J. and Parks J. L. , “Factors Affecting the Production and Performance of Thick Section High Chromium-Molybdenum Alloy Iron Castings,” Climax Molybdenum Company, Metals Forum , 1980 , 3:3...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
... to equipment in order to control the effects of strength and work hardening. Rigid equipment and tooling are necessary to prevent chatter. Chip-curler tools are generally recommended because of the tough, stringy chips produced—particularly in machining austenitic and high-alloy ferritic types. Both high-speed...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005939
EISBN: 978-1-62708-168-9
... low-temperature carburization of austenitic stainless steels and other chromium-containing alloys. It describes the performance properties of the low-temperature carburized layer: fatigue resistance, wear resistance, erosion resistance, and corrosion resistance. austenitic stainless steel...
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0006995
EISBN: 978-1-62708-450-5
.... High-alloy steels are normalized and tempered to reduce their hardness. Double normalizing promotes further grain refinement and improves toughness. If double normalizing is performed, the austenitizing temperature of the first cycle should be approximately 20 to 25 °C (36 to 45 °F) above...
Book Chapter

By Allen J. Fuller, Jr.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006406
EISBN: 978-1-62708-192-4
... of essential alloying elements such as chromium, causing the loss of the very corrosion resistance that warranted its selection in the first place. It is possible to perform a type of carburization on many austenitic and duplex stainless steels that avoids these complications. This process, known as low...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005946
EISBN: 978-1-62708-168-9
.... The retained alloy carbides not only contribute to wear resistance but also control austenitic grain size. The finer the carbides and the larger the volume fraction of carbides, the more effectively austenitic grain growth is controlled. Thus, if austenitizing is performed at too high a temperature...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005978
EISBN: 978-1-62708-168-9
...) Fig. 19 Effect of austenitizing temperature and tempering temperature on hardness of 440 N-DUR. Source: Ref 21 Nitrogen-alloyed stainless steels are used as an alternative to the high carbon and chromium content in through-hardening martensitic stainless steels in bearing applications...
Book Chapter

By David N. Noble
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001411
EISBN: 978-1-62708-173-3
... poor toughness, especially in the welded condition. A duplex microstructure with high ferrite content can therefore have poor low-temperature notch toughness, whereas a structure with high austenite content can possess low strength and reduced resistance to Cl SCC ( Ref 5 ). The high alloy content...
Book Chapter

By Richard B. Gundlach, Douglas V. Doane
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001006
EISBN: 978-1-62708-161-0
... Corrosion-resistant irons derive their resistance to chemical attack chiefly from their high alloy content. Depending on which of three alloying elements—silicon, chromium, or nickel—dominates the composition, a corrosion-resistant iron can be ferritic, pearlitic, martensitic, or austenitic in its...
Book Chapter

By Richard B. Gundlach
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005328
EISBN: 978-1-62708-187-0
... Abstract This article discusses the melting and pouring practices, heat treatment, and applications of different types of high-alloy graphitic iron, namely, high-silicon gray irons, high-silicon ductile irons, nickel-alloyed austenitic irons, austenitic gray irons, austenitic ductile irons...
Book Chapter

By Richard B. Gundlach
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005327
EISBN: 978-1-62708-187-0
... carefully to ensure that the residual levels of alloying elements, such as manganese and copper, which have a potent effect on austenite retention, are consistent and under control. Chromium is obtained in the form of high-carbon ferrochrome and is generally added near the end of the heat to avoid...
Book Chapter

By Harold Burrier, Jr.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001024
EISBN: 978-1-62708-161-0
... the quenching rate ( Fig. 15 ), and austempering to produce a completely bainitic microstructure ( Fig. 16 ), have been shown to improve the fatigue performance of high-carbon bearing steels for certain applications. Fig. 8 Influence of retained austenite on the surface hardness of carburized alloy...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
... hardfacing alloys can be divided into pearlitic steels, austenitic (manganese) steels, martensitic steels, high-alloy irons, and austenitic stainless steel. The types of nonferrous hardfacing alloys include cobalt-base/carbide-type alloys, laves phase alloys, nickel-base/boride-type alloys, and bronze type...