1-20 of 1796 Search Results for

high-nickel alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003619
EISBN: 978-1-62708-182-5
... precipitation, cold working, and cast and wrought forms on the corrosion behavior of high-nickel alloys. alloying elements corrosion nickel alloys heat-resistant alloys chemical composition microstructure electrolyte composition electrode potential corrosion-resistant alloys second-phase...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... Abstract This article discusses the procedures used for pickling nickel and nickel alloys. Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar...
Image
Published: 01 June 2024
Fig. 7 Ductility dip cracking (DDC) in a high-chromium nickel-base alloy. Note the preference of the crack to travel along migrated grain boundaries (GB), its proximity to twinned and recrystallized grains, the preferred direction of crack widening, and multiple crack-initiation points. Open More
Image
Published: 01 January 2005
Fig. 9 Cross section of high-velocity oxyfuel-sprayed coating of nickel alloy 625. Courtesy of TWI, Ltd. More
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005960
EISBN: 978-1-62708-168-9
... Abstract Hardenable steels with high-alloy content includes a family of nickel-cobalt steels with high strength and high toughness. This article describes various heat treatments, namely, normalizing, annealing, hardening, tempering, stress relieving, overaging, quenching, refrigeration...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001423
EISBN: 978-1-62708-173-3
... Carlo Simulation of Grain Growth in the HAZ , Proc. 3rd lnt. Conf. Trends in Welding Research , ASM International , June 1992 17. Morrison T.J. , Shira C.S. , and Weisenberg L.A. , Effects of Minor Elements on the Weldability of High Nickel Alloys , Proc. Weld. Res. Symp...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... a hard compound layer, mostly applied over hardened tool steels; high process temperature can cause distortion. (a) Requires quench from austenitizing temperature In general, simple binary alloys, for example, iron-chromium and nickel-aluminum, are not as effective for oxidation resistance...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006122
EISBN: 978-1-62708-175-7
..., pressing, and sintering. Nickel improves mechanical properties, such as tensile strength and ductility. These alloys are typically used in very competitive markets and applications, and therefore the nickel powders need to be produced by manufacturing methods that can provide a high value product...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001072
EISBN: 978-1-62708-162-7
... alloys, electrical resistance alloys, and mechanically alloyed/dispersion-strengthened alloys are only briefly reviewed as these materials are described elsewhere in this Volume or in Properties and Selection: Irons, Steels, and High-Performance Alloys, Volume 1 of ASM Handbook. Nickel-base alloy...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001093
EISBN: 978-1-62708-162-7
... they are affected by impurities, alloying additions, heat treatment, residual stress, and grain size. It also describes classification and testing methods for magnetically soft materials such as high-purity iron, low-carbon steels, silicon steels, iron-aluminum alloys, nickel-iron alloys, iron-cobalt alloys...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003676
EISBN: 978-1-62708-182-5
... from stainless steels and other alloys as service temperature or environment corrosivity increases. Commercially pure nickel, Nickel 200 (N02200), or its low-carbon version, Nickel 201 (N02201), is used as a corrosion-resistant material in food processing and in high-temperature caustic and gaseous...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001260
EISBN: 978-1-62708-170-2
... rate and a high nickel alloy. The high plating rate is achieved, in part, by agitating the cell using a rotating cylinder cathode. Also contributing to the high plating rate is the formation of a high-nickel-content alloy (recall that the less noble component normally plates at high rates compared...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003609
EISBN: 978-1-62708-182-5
... and by the subsequent removal of chromium from the matrix, leaving a depleted zone. Thus, the selectively removed species move out, while vacancies move inward and eventually form voids. The voids tend to form at grain boundaries in most chromium-containing metals, but in some high- nickel alloys, the voids form...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001428
EISBN: 978-1-62708-173-3
.... Kitchen and food preparation equipment, in particular, were made from “Monel metal,” because of its corrosion resistance, ease of cleaning, and attractive appearance. The consumption of high-nickel-content corrosion-resistant alloys grow at an impressive rate during the postwar years. The cost...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004137
EISBN: 978-1-62708-184-9
... to the use of high-nickel alloys, the welding recommendations of alloy producers should be precisely followed to maintain the corrosion resistance of the materials ( Ref 2 ). This is, of course, true for any type of fabrication. The most careful materials selection process can be negated by poor fabrication...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003153
EISBN: 978-1-62708-199-3
... stainless steel ferromagnetic properties high-purity iron iron-cobalt alloys low-carbon iron nickel-iron alloys silicon steels soft magnetic materials MAGNETIC MATERIALS are broadly classified into two groups with either hard or soft magnetic characteristics. Hard magnetic materials...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
... for improving the erosion-corrosion resistance of the material. Nickel additions enhance the resistance of cast irons to corrosion by reducing acids and alkalis. Nickel additions of 12% or greater are necessary to optimize the corrosion resistance of cast irons. The Ni-Resist group are high-nickel alloys (13.5...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003623
EISBN: 978-1-62708-182-5
... producing such surface contamination as well as gross contamination. Corrosion of Nickel and High-Nickel Alloy Weldments The corrosion resistance of weldments is related to the microstructural and microchemical changes resulting from thermal cycling. The effects of welding on the corrosion resistance...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003810
EISBN: 978-1-62708-183-2
... are necessary to optimize the corrosion resistance of cast irons. The Ni-Resist group are high-nickel alloys (13.5 to 36% Ni) having high resistance to wear, heat, and corrosion. Nickel is not as common an alloying addition as either silicon or chromium for enhancing the corrosion resistance in cast irons...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003834
EISBN: 978-1-62708-183-2
..., and tubing. The noble metal cladding ranges from commonly used stainless steels, such as type 304, to high-nickel alloys, such as Inconel 625 (UNS N06625). These clad metals find various applications in the marine, chemical-processing, power, and pollution control industries. Specific uses include heat...