Skip Nav Destination
Close Modal
By
Takayoshi Nakano, Koji Hagihara
By
Colin McCullough
By
William C. Harrigan, Jr.
By
Steven Lampman
By
Niels Skat Tiedje
Search Results for
high-modulus alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 940
Search Results for high-modulus alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003371
EISBN: 978-1-62708-195-5
... Abstract Metallic matrices are essential constituents for the fabrication of metal-matrix composites (MMCs). This article describes three different classes of aluminum alloys, namely, commercial aluminum alloys, low-density and high-modulus alloys, and high temperature alloys. It presents...
Abstract
Metallic matrices are essential constituents for the fabrication of metal-matrix composites (MMCs). This article describes three different classes of aluminum alloys, namely, commercial aluminum alloys, low-density and high-modulus alloys, and high temperature alloys. It presents typical tensile properties and fracture toughness of the selected heat treatable aluminum alloys in a table. Titanium alloys are very attractive for MMC applications, due to their higher strength and temperature capability compared to aluminum alloys. The article tabulates the effect of heat treatment on room-temperature properties and tensile properties of Ti-25Al-17Nb alloy sheet.
Book Chapter
Beryllium
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003165
EISBN: 978-1-62708-199-3
... Abstract Beryllium possesses an unusual combination of physical and mechanical properties, suiting it for specialized applications where its relatively high cost can be justified. It has very low density, a moderately high melting point, high elastic modulus, and good electrical and thermal...
Abstract
Beryllium possesses an unusual combination of physical and mechanical properties, suiting it for specialized applications where its relatively high cost can be justified. It has very low density, a moderately high melting point, high elastic modulus, and good electrical and thermal conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when handling beryllium.
Book Chapter
2099 High-Strength, Low-Density Plate and Extrusions
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006606
EISBN: 978-1-62708-210-5
.... aluminum alloy 2099 aluminum-copper-lithium alloys elastic modulus extrusions fatigue crack growth resistance high-strength alloys mechanical strength plates Alloy 2099 ( Table 1 ) is a third-generation Al-Cu–Li alloy introduced in 2003 to provide an improved combination of strength, elastic...
Abstract
Alloy 2099 is a third-generation Al-Cu-Li alloy providing an improved combination of strength, elastic modulus, and fatigue crack growth resistance. This datasheet provides information on its key alloy metallurgy and the effects of processing on its mechanical properties.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
... Tungsten (W) alloys Zinc (Zn) alloys Beryllium (Be) Boron (B) Germanium (Ge) Silicon (Si) Engineering plastics (thermoplastics and thermosets) Epoxies (EP) Melamines (MEL) Polycarbonate (PC) Polyesters (PEST) High-density polyethylene (HDPE) Low-density polyethylene...
Abstract
Properties of an engineering material have a characteristic range of values that are conveniently displayed on materials selection charts. This article describes the plotting of data on these charts. It discusses the features of various types of material property charts, namely, modulus-density, strength-density, fracture toughness-density, modulus-strength, specific stiffness-specific strength, fracture toughness-modulus, fracture toughness-strength, loss coefficient-modulus, thermal conductivity-thermal diffusivity, thermal expansion-thermal conductivity, thermal expansion-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner.
Book Chapter
Additive Manufacturing of Medical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
... a titanium alloy as an implant material is related to its relatively low Young’s modulus (close to that of living bone), high biocompatibility through osteointegration (by which it adheres directly to bone on a level seen by optical microscopy), and osteoconductivity. Titanium alloys have a lower Young’s...
Abstract
This article provides an overview of additive manufacturing (AM) methods, the three-dimensional (3D)-AM-related market, and the medical additive manufactured applications. It focuses on the current scenario and future developments related to metal AM for medical applications. The discussion covers the benefits of using 3D-AM technology in the medical field, provides specific examples of medical devices fabricated by AM, reviews trends in metal implant development using AM, and presents future prospects for the development of novel high-performance medical devices via metal 3D-additive manufacturing.
Book Chapter
Continuous Fiber Reinforcements for Metal-Matrix Composites
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003359
EISBN: 978-1-62708-195-5
... are shown in Table 1 . The combination of high strength, modulus, low coefficient of thermal expansion, low density, and low cost seemingly make them a desirable choice to reinforce metals. However, structural carbon fibers are still not widely used in MMCs, for example, aluminum and magnesium alloys...
Abstract
For the reinforcement of metal-matrix composites, four general classes of materials are commercially available: oxide fibers based primarily on alumina and alumina silica systems, nonoxide systems based on silicon carbide, boron fibers, and carbon fibers. This article discusses the key aspects of aluminum oxide fibers, silicon carbide fibers, boron fibers, and carbon fibers. The commercial fibers for reinforcement of metal-matrix composites are presented in a table. A tabulation of the coating schemes for silicon carbide monofilament fibers is also provided.
Book Chapter
2624 Damage Tolerant Plate
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006617
EISBN: 978-1-62708-210-5
... Abstract Alloy 2624 was developed by Alcoa as a plate product to replace alloy 2024 and 2324 in applications requiring moderate or high strength and the highest levels of damage tolerance. This datasheet provides information on composition limits, processing effects on physical and mechanical...
Abstract
Alloy 2624 was developed by Alcoa as a plate product to replace alloy 2024 and 2324 in applications requiring moderate or high strength and the highest levels of damage tolerance. This datasheet provides information on composition limits, processing effects on physical and mechanical properties, and applications of this alloy. Figures provide comparisons of plane stress R-curves of 2624 with 2024-T351 and 2324-T39 and fatigue crack growth resistance of 2624 with 2024-T351 and 2324-T39.
Book Chapter
Metal-Matrix Composites
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003163
EISBN: 978-1-62708-199-3
... in a vacuum, and suffer minimal attack by organic fluids such as fuels and solvents. In an MMC, the matrix phase is a monolithic alloy (usually a low-density nonferrous alloy) and the reinforcement consists of high-performance carbon, metallic, or ceramic additions. Reinforced intermetallic compounds...
Abstract
Metal-matrix composites (MMCs) are a class of materials with potential for a wide variety of structural and thermal applications. This article discusses the mechanical properties of MMCs, namely aluminum-matrix composites, titanium-matrix composites, magnesium-matrix composites, copper-matrix composites, superalloy-matrix composites, and intermetallic-matrix composites. It describes the processing methods of discontinuous aluminum MMCs which include casting processes, liquid-metal infiltration, spray deposition and powder metallurgy. The article provides useful information on aluminum MMC designation system and also describes the types of continuous fiber aluminum MMCs, including aluminum/boron MMC, aluminum/silicon carbide MMC, aluminum/graphite MMC, and aluminum/alumina MMC.
Book Chapter
Quality Assurance of Metal-Matrix Composites
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003437
EISBN: 978-1-62708-195-5
... quality must meet specification, pin strength must be high enough for composite The elastic modulus is an important attribute of these composites. The measurement of the modulus can be achieved by methods described in ASTM E 111 ( Ref 9 ). Ultrasonic velocity measurements and resonant frequency...
Abstract
This article describes the characterization techniques, mechanical tests, and nondestructive evaluation methods that are commonly used for metal-matrix composites. It also tabulates typical methods of particle size and size distribution measurement, as well as mechanical test specifications for aluminum-matrix composites.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006505
EISBN: 978-1-62708-207-5
... alloys are given in Ref 62 . Further details of the influence of alloying elements on the CTE are given in Touloukian ( Ref 63 ). Thermal Conductivity At moderate to high temperatures such as >100 K (> –173 °C), the true thermal conductivity, k , of well-annealed, high-purity (99.99...
Abstract
The purity of aluminum is generally characterized in one of two ways, by terminology or by the Aluminum Association designation system. This article reviews the properties of pure aluminum in purities from 99.99 percent through commercial purity, 99.00 percent. The mechanical properties of aluminum are discussed in terms of tensile properties, stress-strain relationships, and creep. The article also reviews the physical properties of aluminum, such as atomic structure and nuclear properties, atomic spectrum, crystal structure, density, thermal expansion, and thermal conductivity. It discusses the chemical properties of aluminum and presents a summary tabulation of the mechanical strength, ductility, and hardness of pure aluminum.
Book Chapter
7099 High-Strength Plate
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006741
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloy 7099 is a Kaiser aluminum high-strength Al-Mg-Zn-Cu alloy with zirconium that offers a less quench-sensitive alloy for properties in thicker sections for airframe structures such as wing ribs, spars, and skins, as well as fuselage frames and floor beams...
Abstract
The aluminum alloy 7099 is a Kaiser aluminum high-strength Al-Mg-Zn-Cu alloy with zirconium that offers a less quench-sensitive alloy for properties in thicker sections for airframe structures such as wing ribs, spars, and skins, as well as fuselage frames and floor beams. This datasheet provides information on key alloy metallurgy and processing effects on mechanical properties of this 7xxx series alloy.
Book Chapter
Damping Properties
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003383
EISBN: 978-1-62708-195-5
... by the development of high-strength alloys of aluminum and titanium, which generally have lower damping than those provided by their weaker counterparts. Conventional structures have many additional sources of energy dissipation, such as bolted and riveted joints, lubricated bearings, and so on. In space...
Abstract
Damping is the energy dissipation properties of a material or system under cyclic stress. The vibrational and damping characteristics of composites are important in many applications, including ground-based and airborne vehicles, space structures, and sporting goods. This article describes the damping characteristics of unidirectional composites, when they are subjected to longitudinal shear, longitudinal tension/compression, and transverse tension/compression. It presents equations that govern the overall damping capacity of beams that are cut from laminated plates. The article discusses the effect of temperature on damping and provides information on the relationship between damping and strength.
Book Chapter
713.0 High-Strength Sand and Permanent-Mold Casting Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006588
EISBN: 978-1-62708-210-5
... Abstract Alloy 713.0 is an aluminum-based casting alloy that ages at room temperature to provide high-strength sand and permanent-mold castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics...
Abstract
Alloy 713.0 is an aluminum-based casting alloy that ages at room temperature to provide high-strength sand and permanent-mold castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series alloy.
Book Chapter
Cast Cobalt Alloys
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002123
EISBN: 978-1-62708-188-7
... Abstract Cast cobalt alloys were developed to bridge the gap between high-speed steels and carbides. Although comparable in room-temperature hardness to high-speed steel tools, cast cobalt alloy tools retain their hardness to a much higher temperature and can be used at higher cutting speeds...
Abstract
Cast cobalt alloys were developed to bridge the gap between high-speed steels and carbides. Although comparable in room-temperature hardness to high-speed steel tools, cast cobalt alloy tools retain their hardness to a much higher temperature and can be used at higher cutting speeds than high-speed steel tools. This article provides an overview of the processing, properties, and applications of these alloys.
Book Chapter
Riser Design
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009016
EISBN: 978-1-62708-187-0
... commercial copper-base alloys, in which the difficulty in feeding caused by shrinkage porosity is aggravated, especially in thick sections, by the high thermal conductivity of the alloys, which helps maintain a nearly uniform temperature throughout the solidifying casting. To promote directional...
Abstract
The role of an engineer in designing risers is to make sure that risers provide the feed metal in the right amount, at the right place, and at the right time. This article addresses feed metal volume, riser location, and duration of liquid feed metal. It discusses the three types of feeding systems used in riser design: riser sleeves, topping compounds, and breaker cores.
Book Chapter
Titanium and Its Alloys for Biomedical Implants
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... excellent forgeability, cold-rolling capabilities, and in sheet form can be cold brake-formed more readily than high-strength α-β or α alloys. Beta alloys allow one to reduce the modulus by approximately one-third compared to Ti-6Al-4V, and yield strengths of beta alloys are comparable to or below...
Abstract
Titanium and its alloys have been used extensively in a wide variety of implant applications, such as artificial heart pumps, pacemaker cases, heart valve parts, and load-bearing bone or hip joint replacements or bone splints. This article discusses the properties of titanium and its alloys and presents a list of titanium-base biomaterials. Titanium components are produced in wrought, cast, and powder metallurgy (PM) form. The article describes forging, casting, and heat treating of titanium alloys for producing titanium components. Typical mechanical properties of titanium biomedical implant alloys are listed in a tabular form. The article presents an overview of the surface-modification methods for titanium and its alloys implants. It concludes with a section on biocompatibility and in vivo corrosion of titanium alloys.
Book Chapter
Refractory Metals and Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
... alloys. In addition to its high-temperature capabilities, tungsten is commercially important for applications that rely on its high density, strength, and elastic modulus. Tungsten and tungsten alloys are used in mill products, as an alloying element in tool steels and superalloys, in tungsten...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature oxidizing aerospace applications. This article discusses the properties, processing, applications, and classes of refractory metals and its alloys, namely molybdenum, tungsten, niobium, tantalum and rhenium. It also provides an outline of the coating processes used to improve their oxidation resistance.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
...) Compressive strength, MPa (ksi) Up to 2500 (360) Up to 5000 (725) Up to 350 (50) Young's modulus, GPa (psi × 10 6 ) 15 to 400 (2 to 58) 150 to 450 (22 to 65) 0.001 to 10 (0.00015 to 1.45) High-temperature creep resistance Poor to medium Excellent … Thermal expansion Medium to high Low...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Book Chapter
Castability and Product Design of Ductile Iron
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006326
EISBN: 978-1-62708-179-5
.... Alloy ductile cast irons with high silicon or nickel content (see the article “Specification and Selection of Ductile Irons” in this Volume) can be more demanding to feed because the graphite expansion is insufficient to compensate for the contraction of the austenite ( Ref 19 , 21...
Abstract
This article discusses some of the factors that are linked directly to the casting design of ductile iron castings. It reviews the choice of molding process, application of draft, and patternmaker's allowance that should be taken into consideration in designing castings. The article describes the solidification shrinkage associated with the volume change that occurs during solidification, as well as strength and stiffness of ductile iron castings. It concludes with a discussion on the thermal deformation and residual stress in ductile iron castings.
Book Chapter
518.0 Al-Mg Die-Casting Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006583
EISBN: 978-1-62708-210-5
... 518.0 aluminum-magnesium die-casting alloys mechanical properties physical properties rotating-beam fatigue curve Alloy 518.0 ( Table 1 ) is an aluminum die-casting alloy with an excellent combination of high strength and resistance to corrosion, and good fatigue properties ( Fig. 1 and 2...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications of Al-Mg die-casting alloy 518.0. A figure presents die cast aluminum casting rotating-beam fatigue curve for 518.0-F alloy.
1