Skip Nav Destination
Close Modal
Search Results for
high-energy-rate forging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 814
Search Results for high-energy-rate forging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 1998
Fig. 4 Three types of machines for high-energy-rate forging. (a) Ram-and-inner-frame machine. (b) Two-ram machine. (c) Controlled-energy-flow machine. Triggering and expansion of gas in the firing chamber cause the upper and lower rams to move toward each other at high velocity. An outer frame
More
Image
Published: 01 January 2005
Fig. 5 The three basic concepts for high-energy-rate forging. (a) Ram and inner frame machine. (b) Two ram machine. (c) Controlled-energy-flow machine. Triggering and expansion of gas in the firing chamber cause the upper and lower rams to move toward each other at high speed. An outer frame
More
Image
Published: 01 January 2002
Fig. 32 Austenitic stainless steel high-energy-rate forged extrusion. Forging temperature: 815 °C (1500 °F); 65% reduction in area; ε = 1.4 × 10 3 s −1 . (a) View of extrusion showing spiral cracks. (b) Optical micrograph showing the microstructure at the tip of one of the cracks
More
Image
Published: 01 January 2005
Fig. 18 Austenitic stainless steel high-energy-rate forged extrusion. Forging temperature: 815 °C (1500 °F); 65% reduction in area; ε ˙ = 1.4 × 10 3 s − 1 . (a) View of extrusion showing spiral cracks. (b) Microstructure at the tip of one of the cracks in area
More
Image
Published: 01 January 2005
Fig. 15 Austenitic stainless steel high-energy-rate-forged extrusion. Forming temperature 815 °C (1500 °F). 65% reduction in area, ε ˙ =1.4×10 3 s −1 . (a) View of extrusion showing spiral cracks. (b) Microstructure at the tip of one crack in area A of extrusion. Note that crack
More
Image
Published: 01 January 2005
Fig. 10 Aluminum alloy cup produced by high-energy-rate (or high-velocity) forging, shown (a) in plan and sectional views and (b) in perspective with flash attached. See Example 7 . Dimensions given in inches
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003973
EISBN: 978-1-62708-185-6
... Abstract Hammers and high-energy-rate forging machines are classified as energy-restricted machines as they deform the workpiece by the kinetic energy of the hammer ram. This article provides information on gravity-drop hammers, power-drop hammers, die forger hammers, counterblow hammers...
Abstract
Hammers and high-energy-rate forging machines are classified as energy-restricted machines as they deform the workpiece by the kinetic energy of the hammer ram. This article provides information on gravity-drop hammers, power-drop hammers, die forger hammers, counterblow hammers, and computer-controlled hammers. It describes the three basic designs of high-energy-rate forging (HERF) machines: the ram and inner frame, two-ram, and controlled energy flow. The article reviews forging mechanical presses, hydraulic presses, drive presses, screw presses, and multiple-ram presses.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
... on the maximum force rating of the press. Energy-restricted machines, including hammers and high-energy-rate forging machines, deform the workpiece by the kinetic energy of the hammer ram. Screw-type presses, although similar in construction to mechanical and hydraulic presses, are classified as energy...
Abstract
Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic, screw-type, and multiple-ram). It further discusses the technologies used in the design of dies, terminology, and materials selection for dies for the most common hot-forging processes, particularly those using vertical presses, hammers, and horizontal forging machines. A brief section is included on computer-aided design in the forging industry. Additionally, the article reviews specific characteristics, process limitations, advantages, and disadvantages of the most common forging processes, namely hot upset forging, roll forging, radial forging, rotary forging, isothermal and hot-die forging, precision forging, and cold forging.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004036
EISBN: 978-1-62708-185-6
... is it practical to trim if edge angles are less than 15° from the vertical.) Flash in High-Energy-Rate Forging The high-energy-rate forging process (HERF), also called high-velocity forging (HVF), can be used in conjunction with no-draft, precision forging. Accordingly, the flash developed in HERF or HVF...
Abstract
In terms of the design of a forging, flash is an excess or surplus of metal that is trimmed or otherwise removed after forging operations are completed. This article discusses flash components and the functions of flash. It describes a series of conventional and unconventional flash designs and design adjustments, covering several forging processes and configurations. The article concludes with information on the checklists for the convenience of both designers of forgings and designers of forging dies and contiguous flash.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003974
EISBN: 978-1-62708-185-6
...–30 4.5–9.0 Total speed 20–80 6.0–12.0 HERF (b) machines 8–20 2.4–6.0 (a) Lower speeds are valid for larger-capacity presses. (b) High energy rate forging. Source: Ref 3 The significant characteristics of these machines comprise all machine design and performance data...
Abstract
This article discusses the significant factors in the selection of forging equipment for a particular process. It describes the characteristics of forging hydraulic presses, mechanical presses, screw presses, and hammers. The article discusses the significant characteristics of these machines that comprise all machine design and performance data, which are pertinent to the economic use of the machines, including the characteristics for load and energy, time-related characteristics, and characteristics for accuracy.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004031
EISBN: 978-1-62708-185-6
..., boundary sliding. Under severe conditions, deformation, or high-temperature service cold trimming. The removal of ash or excess cavities may grow and coalesce to give rise to exposure. Coarsening thus leads to a decrease metal from a forging at room temperature in a fracture. in the total surface energy...
Abstract
This article is a comprehensive collection of terms related to metalworking operations that produce shapes from forging, extrusion, drawing, and rolling operations.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.9781627081856
EISBN: 978-1-62708-185-6
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005169
EISBN: 978-1-62708-186-3
... q plan view area hp thickness direction mA interface; friction factor; strain- Q HR hardness; height max rate sensitivity exponent plastic constraint factor Brinell hardness MC r activation energy HSLA hexagonal close-packed MCS bending moment hT high-energy-rate forging MDO milliampere r0 radius...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.9781627081863
EISBN: 978-1-62708-186-3
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005454
EISBN: 978-1-62708-196-2
... prior processing. strain rate, and temperature. crank. Forging shape generally in the form of a U with projections at more or less right 702 / Reference Information specimens of a ductile material, in which the conversion of strain energy, imparted during The upper member or members are attached...
Abstract
This article is a compilation of definition of the terms related to modeling for metals processing.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002402
EISBN: 978-1-62708-193-1
... and high upper-shelf energies. The VAR heats exhibited good toughness in the longitudinal orientation but possessed higher transition temperatures and upper-shelf energies of only 120 J. The fracture appearance data plotted in Fig. 1(b) followed the same trends. The superior toughness in the ESR steel...
Abstract
Cr-Mo steels are preferred in the construction of high-temperature components because they possess excellent strength, toughness, and corrosion resistance relative to carbon steels and most low-alloy steels. This article discusses the composition and metallurgy of the heat-resistant Cr-Mo steels. It details the Charpy V-notch (CVN) toughness properties of Cr-Mo steels relevant to fatigue and fracture resistance. The fracture mechanics of Cr-Mo steels are reviewed. The article analyzes the characterization of low-cycle fatigue based on fatigue damage calculations. It concludes with information on fatigue crack growth and fatigue behavior of weldments.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001381
EISBN: 978-1-62708-173-3
... increases flywheel deceleration rates, intensifies heat generation, and raises temperatures at the faying surfaces. A rapid energy input and a high rate of heat generation, typical of inertia-drive FRW, result in very short weld cycles. There is little time for heat to dissipate in the axial direction, so...
Abstract
Friction welding (FRW) can be divided into two major process variations: direct-drive or continuous-drive FRW and inertia-drive FRW. This article describes direct-drive FRW variables such as rotational speed, duration of rotation, and axial force and inertia-drive FRW variables such as flywheel mass, rotational speed, and axial force. It lists the advantages and limitations of FRW and provides a brief description on categories of applications of FRW such as batch and jobbing work and mass production. A table of process parameters of direct-drive FRW systems relative to inertia-drive FRW systems is also provided.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.9781627081962
EISBN: 978-1-62708-196-2
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005155
EISBN: 978-1-62708-186-3
.... rates of the order of 0.05 sÀ1 or greater. Also ingot into a billet with a forging hammer or a compact (noun). The object produced by the known as nonisothermal forging. forging press. compression of metal powder, generally while core. Inner material in a coextruded or codrawn coil breaks. Creases...
Abstract
This article is a compilation of definitions of the terms related to sheet metal forming and fabrication.
Book Chapter
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005543
EISBN: 978-1-62708-197-9
... deformation, or high-temperature service blocks too hard for the depth of the die exposure. Coarsening thus leads to a casting modulus. A simpli ed approach to impression have a tendency to check or decrease in the total surface energy asso- determining solidi cation time. The time is develop cracks...
Abstract
This article is a compilation of definition of the terms related to simulation of metals processing.
1