1-20 of 466 Search Results for

high-chromium white iron

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006305
EISBN: 978-1-62708-179-5
...-chromium white irons, chromium-molybdenum irons, and high-chromium white irons. Mechanical properties for three white irons representing each of these three general groups are presented as bar graphs. The article also describes the various heat treatments of a martensitic microstructure, including...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005988
EISBN: 978-1-62708-168-9
... treatment to develop proper balance between resistance to abrasion and toughness needed to withstand repeated impact. This article provides a brief discussion on the heat treatment, mechanical properties, and chemical compositions of high-alloy white cast irons such as nickel-chromium white irons and high...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005327
EISBN: 978-1-62708-187-0
... Abstract This article presents a discussion on the melting, pouring, and shakeout practices; composition control; molds, patterns, and casting design; heat treatment; and applications of different classes of nickel-chromium white irons and high-chromium white irons. iron castings heat...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000604
EISBN: 978-1-62708-181-8
... note small microcracks through sulfide inclusions. SEM, 1,150×. (R.C. Voigt and B. Pourlaidian, University of Kansas) Cracking in 75-mm (3-in.) diam balls made of a high-chromium white iron when subjected to severe, repeated impacts in a laboratory test. Fig. 106 : Cracks through eutectic M 7 C 3...
Book Chapter

By Charles V. White
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001002
EISBN: 978-1-62708-161-0
... resistance to sulfuric, nitric, and formic acids; however, both high-chromium and high-silicon irons are white, and the high-silicon irons are extremely brittle. The electrical and magnetic properties of cast iron can be modified slightly by minor additions of alloying elements, but a major change in...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006341
EISBN: 978-1-62708-179-5
... high-chromium white irons, the M 4 C 5 V-carbide in the vanadium irons, or NbC, TiC, and Mo 2 C in irons alloyed with sufficient levels of niobium, titanium, and molybdenum, respectively. Fig. 1 Effect of silicon on eutectic temperature of stable graphite and metastable cementite. Source: Ref 1...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005945
EISBN: 978-1-62708-168-9
... irons. These include gray iron, ductile iron, compacted graphite iron, white iron, malleable iron, and high-alloy iron. The article describes how to control temperature and atmosphere during the heat treatment of the iron castings. annealing atmosphere control cast iron compacted graphite iron...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006310
EISBN: 978-1-62708-179-5
... are often used to stop pouring before magnesium content or inoculant effectiveness declines to unacceptable levels. Some foundries that manually pour ductile iron are converting to a single-ladle practice, with a high-efficiency ladle design specialized for treating, inoculating, and pouring. The...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001006
EISBN: 978-1-62708-161-0
... Ni Cr Mo Cu Abrasion-resistant white irons Low-carbon white iron (d) 2.2–2.8 0.2–0.6 0.15 0.15 1.0–1.6 1.5 1.0 0.5 (e) CP High-carbon, low-silicon white iron 2.8–3.6 0.3–2.0 0.30 0.15 0.3–1.0 2.5 3.0 1.0 (e) CP Martensitic nickel-chromium iron 2.5–3.7 1.3...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006332
EISBN: 978-1-62708-179-5
..., chemical composition, especially carbon and chromium contents, can greatly affect the eutectic temperature and solidification mode of high-alloy white irons and thus their castability ( Fig. 4 , 5 ). By careful design and/or selection of a high-alloy white iron, its freezing range can be reduced and the...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
.... Fig. 9 White high-chromium iron (Fe-3.2%C-4.65%Cr-2.9%Mn-0.51%Si-0.050%P-0.024%S). Eutectic and secondary carbides in the matrix. Specimen was prepared correctly. The casting was austenitized at 1000 °C (1830 °F), held 1 h, furnace cooled to 400 °C (750 °F) for 2 h, taken to salt bath at 400 °C (750...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006342
EISBN: 978-1-62708-179-5
... long. Both problems will result in too much removal of the softer matrix that was surrounding the primary carbides. Fig. 12 White high-chromium iron (Fe-3.2%C-4.65%Cr-2.9%Mn-0.51%Si-0.050%P-0.024%S). Eutectic and secondary carbides in the matrix. Specimen was prepared correctly. The casting was...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
..., nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005294
EISBN: 978-1-62708-187-0
... irons. Foundry practices are also described for compacted graphite, high-silicon ductile, and high-alloy white irons. alloying compacted graphite iron desulfurization high-alloy white iron high-nickel ductile iron high-silicon ductile iron high-silicon gray iron malleable iron sand molds...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0009206
EISBN: 978-1-62708-161-0
... (18% Ni, 5% Si). For corrosion resistance, irons with high chromium (up to 28%), nickel (up to 18%), and silicon (up to 15%) are used. For a comprehensive discussion on the mechanical and physical properties of special cast irons see Ref 17 . Historically, the first classification of cast iron...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
... resistance, irons with high chromium (up to 28%), nickel (up to 18%), and silicon (up to 15%) are used. Additional information on this subject can be found in the Division on “High-Alloy Iron Castings” in this Volume. Historically, the first classification of cast iron was based on its fracture. Two...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005326
EISBN: 978-1-62708-187-0
... difficult because the high temperatures used can cause the formation of a brittle layer of graphite-free white iron. Pearlitic and martensitic malleable iron can be successfully welded if the surface to be welded has been heavily decarburized. Pearlitic or martensitic malleable iron can be brazed by...
Book Chapter

Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001005
EISBN: 978-1-62708-161-0
.... The range in silicon content is limited to ensure proper annealing during a short-cycle high-production annealing process and to avoid the formation of primary graphite (known as mottle) during solidification of the white iron. Manganese and sulfur contents are balanced to ensure that all sulfur is...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006304
EISBN: 978-1-62708-179-5
... good crystallographic compatibility, low lattice disregistry or mismatch, fine dispersion in the melt (1 to 3 μm), and high stability at elevated temperatures ( Ref 17 ). Theories advocating one-stage, two-stage, or multistage nucleation have been offered. The iron carbide (cementite) is based...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005903
EISBN: 978-1-62708-167-2
... graphite form mostly prevents the notch stress peaks that occur in GCI, as seen in Fig. 5(b) . This gives NCI much higher tensile strengths, between 350 to 900 N/mm 2 , and a high ductility that attains steellike properties with a 0.2% expansion limit range of 220 to 600 N/mm 2 . Cast iron nevertheless...