Skip Nav Destination
Close Modal
Search Results for
high-carbon case
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2115
Search Results for high-carbon case
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 December 2017
Fig. 3 Micrograph of a high-carbon (≈0.85% C) carburized steel case in AISI 86 xx -series steel showing plate martensite (dark needles) and retained austenite (light etching areas). This specimen measured 37% retained austenite by x-ray diffraction at the surface.
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002400
EISBN: 978-1-62708-193-1
... in carburized steels. The stages of fatigue and fracture of the steels, namely crack initiation, stable crack propagation, and unstable crack propagation, are reviewed. The article analyzes the intergranular fracture at the prior-austenite grain boundaries of high-carbon case microstructures that dominates...
Abstract
Bending fatigue of carburized steel components is a result of cyclic mechanical loading. This article reviews the alloying and processing factors that influence the microstructures and bending fatigue performance of carburized steels. These include austenitic grain size, surface oxidation, retained austenite, subzero cooling, residual stresses, and shot peening. The article describes the analysis of bending fatigue behavior of the steels based on S-N curves that represents a stress-based approach to fatigue. It discusses the types of specimen used to evaluate bending fatigue in carburized steels. The stages of fatigue and fracture of the steels, namely crack initiation, stable crack propagation, and unstable crack propagation, are reviewed. The article analyzes the intergranular fracture at the prior-austenite grain boundaries of high-carbon case microstructures that dominates bending fatigue crack initiation and unstable crack propagation of direct-quenched carburized steels.
Image
Published: 01 December 2004
Fig. 28 Case microstructure of 1010 steel, carbonitrided at 790 °C (1450 °F) and oil quenched. The high-carbon case (left) is similar to that in Fig. 27 , but the core (right) is predominantly ferrite. Nital etch. 200×
More
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005982
EISBN: 978-1-62708-168-9
..., by forging and machining, into finished shapes and then are converted by carburizing into a composite material consisting of a high-carbon steel case and low-carbon steel core. When this steel composite is quenched to martensite and tempered, the high hardness and strength of the case microstructure...
Abstract
This article describes the microstructure, properties, and performance of carburized steels, and elucidates the microstructural gradients associated with carbon and hardness gradients. It provides information on case depth measurement, the factors affecting case depth, and the formation and causes of microcracks. The article discusses the effects of alloying elements on hardenability, the effects of excessive retained austenite and massive carbides on fatigue resistance, the effects of residual stresses and internal oxidation on fatigue performance of carburized steels. In addition, the causes of intergranular fracture at austenite grain boundaries and their prevention methods are explored. The article also describes the major mechanisms of bending fatigue crack initiation in carburized steels.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006406
EISBN: 978-1-62708-192-4
... the cross section of the component, whereas a carburized part has a carbon gradient from the surface (higher carbon) down to the base carbon content of the steel. It is this gradient that gives a carburized component its beneficial properties after heat treatment. The depth of the high-carbon case...
Abstract
This article reviews the factors influencing carburization to improve wear resistance of steel, such as operating temperature, cost, production volume, types of wear, and design criteria. It details the types of wear, namely abrasive wear and adhesive wear. The article discusses the characteristics of carburized steels that affect wear resistance, including hardness, microstructure, retained austenite, and carbides. It also describes the processing considerations for carburization of titanium.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003762
EISBN: 978-1-62708-177-1
... ), of which carburizing and carbonitriding are the most widely used. Nitriding and nitrocarburizing are also widely used. In general, the steels best suited to these processes are low-carbon steels that rely on a surface layer, or case, of high hardness to provide a level of strength and wear resistance...
Abstract
This article discusses the metallography and microstructures of carburized, carbonitrided, and nitrided steels, with illustrations. It provides information on the widely used metallographic techniques including sectioning, mounting, grinding and polishing, and etching.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005951
EISBN: 978-1-62708-168-9
... scuffing and seizing between two parts under heavy contact with sliding motion. In this type of service, fully martensitic high-carbon case is usually required. Case-hardening methods that use nitrogen (e.g., carbonitriding or nitriding) also are effective in resisting wear by scuffing and seizing. Case...
Abstract
Case hardening involves various methods and each method has unique characteristics and different considerations in the selection of steels This article reviews the various grades of carburizing steels, carbonitriding steels, nitriding steels, and steels for induction, or flame hardening. This review is based on their process characteristics, compositions, applications, and mechanical properties, which help in selecting steels for case hardening.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005811
EISBN: 978-1-62708-165-8
... at the surface is then allowed to diffuse into the steel, so that a sufficient carbon profile or gradient is achieved below the surface. After a sufficient carbon profile is achieved, the steel is then quenched for transformation (martensitic) hardening of the high-carbon case. Carburization has the ability...
Abstract
Carburization is the process of intentionally increasing the carbon content of a steel surface so that a hardened case can be produced by martensitic transformation during quenching. Like carburizing, carbonitriding involves heating above the upper critical temperature to austenitize the steel. This article introduces the fundamentals, types, advantages and limitations, and the complications of various forms of carburizing, namely, pack carburizing, liquid carburizing or salt bath carburizing, gas carburizing, and low-pressure (vacuum) carburizing. The related process of carbonitriding is also briefly described in the article.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... grain boundaries is an almost universal fracture mode for the high-carbon case of direct-quenched carburized steels ( Ref 16 ). Auger electron spectroscopy shows that such IG fracture surfaces have higher concentrations of phosphorus and carbon, in the form of cementite. Thus, the brittle IG fracture...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
...; no white layer; high equipment costs; close case control Carbonitriding Gas Diffused carbon and nitrogen 760–870 1400–1600 75 μm–0.75 mm (3–30 mils) 50–65 (a) Low-carbon steels, low-carbon alloy steels, stainless steels Lower temperature than carburizing (less distortion); slightly harder...
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting the choice of these surface-hardening methods.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005952
EISBN: 978-1-62708-168-9
... regions have different functions to perform in service. Until the introduction of lean alloy steels such as the 86 xx series, with and without boron, there was little need to be concerned about case hardenability, because the alloy content combined with the high carbon content always provided adequate...
Abstract
This article commences with a brief introduction on the hardenability of carburized steels, and then reviews the factors used in the selection of carburizing steels and heat treatment methods. The factors include quench medium, stress considerations, case depth, and type of case. The article provides information on steels for carburized gears with emphasis on gear design requirements, selection process, selection of carbon content, case and core hardness, microstructure, and toughness and short-cycle fatigue.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
.... Some specific situations of IG fracture include: High-carbon steels with a pearlitic microstructure Segregated phosphorus and cementite at prior-austenite grain boundaries in the high-carbon-case microstructures of carburized steels Stress-relief cracking Grain-boundary carbide films due...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001024
EISBN: 978-1-62708-161-0
... of a bearing steel. It also discusses the typical microstructure of a high-carbon through-hardened bearing, and shows typical case and core microstructures in carburized bearing materials. Apart from a satisfactory microstructure, which is obtained through the proper combination of steel grade and heat...
Abstract
Bearing steels, which include high-carbon and low-carbon types, can be divided into service-based classes, such as normal service, high-temperature service, and service under corrosive conditions. This article discusses the importance of matching the hardenability and quenching of a bearing steel. It also discusses the typical microstructure of a high-carbon through-hardened bearing, and shows typical case and core microstructures in carburized bearing materials. Apart from a satisfactory microstructure, which is obtained through the proper combination of steel grade and heat treatment, the single most important factor in achieving high levels of rolling-contact fatigue life in bearings is the cleanliness, or freedom from harmful nonmetallic inclusions, of the steel. Alloy conservation and a more consistent heat-treating response are benefits of using specially designed bearing steels. The selection of a carburizing steel for a specific bearing section is based on the heat-treating practice of the producer, either direct quenching from carburizing or reheating for quenching, and on the characteristics of the quenching equipment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003197
EISBN: 978-1-62708-199-3
... produced are in the same range as for high-temperature cyanide-type baths (see Fig. 5 ), but there is no nitrogen in the case. Fig. 5 Carbon gradients produced by liquid carburizing of carbon and alloy steels. Carbon gradients produced by liquid carburizing carbon and alloy steels in low...
Abstract
Case hardening is defined as a process by which a ferrous material is hardened in such a manner that the surface layer, known as the case, becomes substantially harder than the remaining material, known as the core. This article discusses the equipment required, process variables, carbon and hardness gradients, and process procedures of different types of case hardening methods: carburizing (gas, pack, liquid, vacuum, and plasma), nitriding (gas, liquid, plasma), carbonitriding, cyaniding and ferritic nitrocarburizing. An accurate and repeatable method of measuring case depth is essential for quality control of the case hardening process and for evaluation of workpieces for conformance with specifications. The article also discusses various case depth measurement methods, including chemical, mechanical, visual, and nondestructive methods.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005765
EISBN: 978-1-62708-165-8
... may be as high as one part new compound to Case depth was determined microscopically content and carbon gradient that can be two parts used compound. When furnace cool- after each of the 20 cycles. Variation in obtained in gas carburizing. ing and careful handling methods are used, the case depth...
Abstract
Pack carburizing is a process in which carbon monoxide derived from a solid compound decomposes at the metal surface into nascent carbon and carbon dioxide. In addition to discussing the pros and cons of pack carburizing, this article provides information on the carburizing medium, compounds, furnaces, and containers used in pack carburizing. The successful operation of the pack carburizing process depends on the control of principal variables such as carbon potential, temperature, time, case depth, and steel composition. The three types of furnaces most commonly used for pack carburizing are the box, car-bottom, and pit types. Carburizing containers are made of carbon steel, aluminum-coated carbon steel, or iron-nickel-chromium heat-resisting alloys. The article also provides information on the packing procedure of workpieces.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005813
EISBN: 978-1-62708-165-8
... the targeted carbon profile is obtained, the parts are quenched. Quenching can be initiated either from carburizing temperature or from a lower hardening temperature. In most cases, high-pressure gas quenching (HPGQ) with either nitrogen or helium is applied after LPC. In some applications, oil quenching...
Abstract
Low-pressure carburizing (LPC) is one of the most popular case-hardening processes and is applied to increase the fatigue limit of dynamically loaded components. It takes place in a pressure range between 5 and 15 mbar (4 and 11 torr) and at temperature range between 870 and 1050 deg C. The LPC process runs in two different types of equipment: single-chamber furnaces and treatment chambers. This article reviews the use of simulation software for prediction of carbon profiles and typical quality control procedures. It describes the physical principles and typical applications of LPC.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001029
EISBN: 978-1-62708-161-0
... of the high-carbon case regions of carburized steels. Such information is important in controlling carburizing and quenching practice and in determining the ability of a specific steel to meet the microstructural and case depth requirements of the carburized component manufactured from the steel. As a general...
Abstract
Hardenability of steel is the property that determines the depth and distribution of hardness induced by quenching. Hardenability is usually the single most important factor in the selection of steel for heat-treated parts. The hardenability of a steel is best assessed by studying the hardening response of the steel to cooling in a standardized configuration in which a variety of cooling rates can be easily and consistently reproduced from one test to another. These include the Jominy end-quench test, the carburized hardenability test, and the air hardenability test. Tests that are more suited to very low hardenability steels include the hot-brine test and the surface-area-center test. The article discusses the effects of varying carbon content as well as the influence of different alloying elements. It includes charts and a table that serve as a general steel hardenability selection guide.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005801
EISBN: 978-1-62708-165-8
... that are used for the calculation of case hardenability of carburizing steels and the hardenability of high-carbon steels hardened after a prior normalize or quench treatment. The article reviews the derivation and limitations of multiplying factors. hardenability high-carbon steel quenching...
Abstract
Hardenability of steel depends on carbon content and other alloying elements as well as on the grain size of the austenite phase. This article provides information on the calculation of high-carbon (carburized) steel hardenability. It contains tables that list multiplying factors that are used for the calculation of case hardenability of carburizing steels and the hardenability of high-carbon steels hardened after a prior normalize or quench treatment. The article reviews the derivation and limitations of multiplying factors.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
..., <30; high-carbon steel, 50–60 High- and low-carbon steels, nickel- and cobalt-base superalloys Chromized low-carbon steels yield a low-cost stainless steel; high-carbon steels develop a hard corrosion-resistant case. Titanium carbide Diffused carbon and titanium, TiC compound 900–1010 1650...
Abstract
Pack cementation is the most widely employed method of diffusion coating. This article briefly reviews pack cementation processes of aluminizing, chromizing, and siliconizing. It contains tables that list typical characteristics of pack cementation processes and commercial applications of pack cementation aluminizing, which is used to improve the performance of steels in high-temperature corrosive environments.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005799
EISBN: 978-1-62708-165-8
... information on carburizing modeling, case depth prediction, case depth measurement, and case depth evaluation as well as on carburizing equipment, and also covers the factors affecting distortion after carburizing. austenite carbon content carburizing modeling case depth continuous furnaces...
Abstract
This article describes the thermodynamics and kinetics of gas carburizing reactions, and details the mass transfer mechanism during gas carburizing. It discusses the various considerations involved in carburizing process planning, and reviews successful operation of the gas carburizing process based on the control of three principal variables: temperature, atmosphere composition or carbon potential, and time. The article also describes the selection criteria for alloy, carbon sources, atmosphere types, and carbon monoxide level for endothermic carburizing atmospheres. It provides information on carburizing modeling, case depth prediction, case depth measurement, and case depth evaluation as well as on carburizing equipment, and also covers the factors affecting distortion after carburizing.
1