Skip Nav Destination
Close Modal
By
J.R. Keough, K.L. Hayrynen
By
Richard B. Gundlach, Harry Tian, Brian Bendig
By
Harry Tian, Richard B. Gundlach
By
Doru M. Stefanescu, Roxana Ruxanda
By
Richard B. Gundlach, John M. Tartaglia
By
J.L. Dossett, C.V. White
By
George F. Vander Voort, Juan Asensio-Lozano
By
Russell C. Buckley
Search Results for
high-alloy white iron
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 794
Search Results for high-alloy white iron
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Heat Treatment of High-Alloy White Cast Irons
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006305
EISBN: 978-1-62708-179-5
... Abstract The high-alloyed white irons are primarily used for abrasion-resistant applications and are readily cast into the parts needed in machinery for crushing, grinding, and handling of abrasive materials. This article discusses three major groups of the high-alloy white cast irons: nickel...
Abstract
The high-alloyed white irons are primarily used for abrasion-resistant applications and are readily cast into the parts needed in machinery for crushing, grinding, and handling of abrasive materials. This article discusses three major groups of the high-alloy white cast irons: nickel-chromium white irons, chromium-molybdenum irons, and high-chromium white irons. Mechanical properties for three white irons representing each of these three general groups are presented as bar graphs. The article also describes the various heat treatments of a martensitic microstructure, including austenitization, quenching, tempering, annealing, and stress relieving.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005327
EISBN: 978-1-62708-187-0
... treatment high-alloy white iron high-chromium white irons machining microstructure nickel-chromium white irons melting pouring shakeout composition control molds design patterns design casting design HIGH-ALLOYED WHITE CAST IRONS are an important group of materials whose production must...
Abstract
This article presents a discussion on the melting, pouring, and shakeout practices; composition control; molds, patterns, and casting design; heat treatment; and applications of different classes of nickel-chromium white irons and high-chromium white irons.
Book Chapter
Heat Treating of High-Alloy White Cast Irons
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005988
EISBN: 978-1-62708-168-9
... Abstract High-alloyed white cast irons are an important group of materials whose production must be considered separately from that of ordinary types of cast irons. The metallic matrix supporting the carbide phase in the high-alloy white cast irons can be adjusted by alloy content and heat...
Abstract
High-alloyed white cast irons are an important group of materials whose production must be considered separately from that of ordinary types of cast irons. The metallic matrix supporting the carbide phase in the high-alloy white cast irons can be adjusted by alloy content and heat treatment to develop proper balance between resistance to abrasion and toughness needed to withstand repeated impact. This article provides a brief discussion on the heat treatment, mechanical properties, and chemical compositions of high-alloy white cast irons such as nickel-chromium white irons and high-chromium white irons.
Book Chapter
Specification, Selection, and Applications of High-Alloy Iron Castings
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006341
EISBN: 978-1-62708-179-5
... Abstract The high-alloy irons can be categorized into two main groups: the high-alloy graphitic irons (covering both gray and ductile grades) and the high-alloy white irons. High-alloy irons are used in applications with demanding requirements, such as high resistance to wear, heat...
Abstract
The high-alloy irons can be categorized into two main groups: the high-alloy graphitic irons (covering both gray and ductile grades) and the high-alloy white irons. High-alloy irons are used in applications with demanding requirements, such as high resistance to wear, heat, and corrosion, or for combined properties. This article discusses the specification and selection of high-alloy irons. The common alloying elements and their effect on the stable and metastable eutectic temperatures are listed in a table. The article provides information on the compositions, properties and applications of high-alloy graphitic irons and high-alloy white irons.
Book Chapter
Castability, Product Design, and Production of High-Alloy Iron Castings
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006332
EISBN: 978-1-62708-179-5
... composition and initial melt condition. Besides the basic alloy properties, the effective castability of high-alloy irons can be significantly improved through casting and casting system design. The article describes the product design and processing factors of high-alloy graphitic irons and high-alloy white...
Abstract
Castability of alloys is a measure of their ability to be cast to a given shape with a given process without the formation of cracks/tears, pores/shrinkage, and/or other significant casting defects. This article discusses the factors which affect the fluidity of an iron melt: alloy composition and initial melt condition. Besides the basic alloy properties, the effective castability of high-alloy irons can be significantly improved through casting and casting system design. The article describes the product design and processing factors of high-alloy graphitic irons and high-alloy white irons. It explains the heat treatment of high-silicon irons for high-temperature service and concludes with a discussion on machining and finishing of high-alloy iron castings.
Book Chapter
Cast Iron Foundry Practices
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005294
EISBN: 978-1-62708-187-0
... irons. Foundry practices are also described for compacted graphite, high-silicon ductile, and high-alloy white irons. alloying compacted graphite iron desulfurization high-alloy white iron high-nickel ductile iron high-silicon ductile iron high-silicon gray iron malleable iron sand molds...
Abstract
This article reviews the production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the molten metal treatments for high-silicon gray, high-nickel ductile, and malleable irons. Foundry practices are also described for compacted graphite, high-silicon ductile, and high-alloy white irons.
Image
High-chromium white iron microstructures. (a) As-cast austenitic-martensiti...
Available to PurchasePublished: 01 December 1998
Fig. 3 High-chromium white iron microstructures. (a) As-cast austenitic-martensitic matrix microstructure. (b) Heat-treated martensitic microstructure. The massive carbides typically found in high-alloy white irons are the white constituent. Both at 500×
More
Image
Microstructures of high-chromium white iron metal-to-earth abrasion alloys ...
Available to PurchasePublished: 01 January 1993
Fig. 2 Microstructures of high-chromium white iron metal-to-earth abrasion alloys hardfaced with two-layer flux-colored open arc deposit. (a) ERFeCr-A3. (b) ERFeCr-A4(Mod). (c) ERFeCr-A2. 300×. Source: Ref 2
More
Book Chapter
Alloy Cast Irons
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003111
EISBN: 978-1-62708-199-3
.... Otherwise, alloying elements are used almost exclusively to enhance resistance to abrasive wear or chemical corrosion or to extend service at elevated temperatures. Types of Alloy Cast Irons Alloy cast irons can be broadly classified as either graphite-free, high-alloy cast irons (white irons...
Abstract
Alloy cast irons are casting alloys based on the Fe-C-Si system that contain one or more alloying elements added to enhance one or more useful properties. This article discusses the composition of different types of alloy cast iron, including white cast irons, corrosion-resistant cast irons, heat-resistant cast irons, and abrasion-resistant cast irons. It provides information on the effect of the alloying element on their high-temperature properties. The article also discusses the microstructure and mechanical properties of alloy cast irons.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003174
EISBN: 978-1-62708-199-3
.... alloy steels carbon steels cast iron microstructures compacted graphite iron ductile iron ferrous alloys foundry practice gray iron high-alloy white iron malleable iron solidification General Considerations for Cast Irons CAST IRON usually refers to an in situ composite of stable...
Abstract
Cast iron, which usually refers to an in situ composite of stable eutectic graphite in a steel matrix, includes the major classifications of gray iron, ductile iron, compacted graphite iron, malleable iron, and white iron. This article discusses melting, pouring, desulfurization, inoculation, alloying, and melt treatment of these major ferrous alloys as well as carbon and alloy steels. It explains the principles of solidification by describing the iron-carbon phase diagram, and provides a pictorial presentation of the basic microstructures and processing steps for cast irons.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001006
EISBN: 978-1-62708-161-0
... irons, and heat-resistant cast irons. This article discusses abrasion-resistant chilled and white irons, high-alloy corrosion-resistant irons, and medium-alloy and high-alloy heat-resistant gray and ductile irons. The article outlines in a list the approximate ranges of alloy content for various types...
Abstract
Alloy cast irons are considered to be those casting alloys based on the iron-carbon-silicon system that contain one or more alloying elements intentionally added to enhance one or more useful properties. Alloy cast irons can be classified as white cast irons, corrosion-resistant cast irons, and heat-resistant cast irons. This article discusses abrasion-resistant chilled and white irons, high-alloy corrosion-resistant irons, and medium-alloy and high-alloy heat-resistant gray and ductile irons. The article outlines in a list the approximate ranges of alloy content for various types of alloy cast irons. The article explains the effects of alloying elements and the effects of inoculants. In most cast irons, it is the interaction among alloying elements that has the greatest effect on properties. Inoculants other than appropriate graphitizing or nodularizing agents are used rarely, if ever, in high-alloy corrosion-resistant or heat-resistant irons.
Book
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.9781627081795
EISBN: 978-1-62708-179-5
Book Chapter
Solidification Structures of Steels and Cast Irons
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003725
EISBN: 978-1-62708-177-1
... International , 1988 , p 119 28. Bunin K.P. , Malinotchka I.N. , and Taran I.N. , Osnovi Metallographyia Tchuguna , Metallurghyia, Moscow , 1969 29. Gundlach R.B. , High-Alloy White Irons , Casting , Vol 15 , ASM Handbook , Stefanescu D.M. , Ed., ASM...
Abstract
The ferrous metals are the most significant class of commercial alloys. This article describes the solidification structures of plain carbon steel, low-alloy steel, high-alloy steel, and cast iron, with illustrations. The formation of nonmetallic inclusions in the liquid before and during solidification is also discussed.
Book Chapter
Fractography of Cast Irons
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007035
EISBN: 978-1-62708-387-4
..., and Brinell hardness ranges from 350 to 550 HBW. In the “high-alloy” irons, the carbide phase is generally chromium carbide of the M 7 C 3 type, and hardness ranges from 450 to 800 HBW. For many applications, the increased abrasion resistance of the more expensive high-alloy white irons adds significantly...
Abstract
The cast iron family includes several different groups, including gray iron, ductile iron, compacted graphite iron, malleable iron, white iron, and many different grades within each of these alloy groups. This article addresses issues specific to gray iron, but in many instances the discussion can be related to the other cast iron groups and the various grades within those groups. It discusses the usage of techniques and procedures in cast iron fractography. The article presents a list of common defects that can initiate failure.
Book Chapter
Introduction to Cast Iron Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005945
EISBN: 978-1-62708-168-9
... irons. These include gray iron, ductile iron, compacted graphite iron, white iron, malleable iron, and high-alloy iron. The article describes how to control temperature and atmosphere during the heat treatment of the iron castings. annealing atmosphere control cast iron compacted graphite iron...
Abstract
This article introduces the general principles and applications of heat treatment to iron castings. It provides a detailed discussion on the heat treatment processes, namely, stress relieving, annealing, normalizing, throughhardening, and surface hardening for various types of cast irons. These include gray iron, ductile iron, compacted graphite iron, white iron, malleable iron, and high-alloy iron. The article describes how to control temperature and atmosphere during the heat treatment of the iron castings.
Book Chapter
Microstructure and Characterization of High-Alloy Cast Irons
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006351
EISBN: 978-1-62708-179-5
... discusses the use of black and white etchants and lists the compositions of abrasion-resistant cast irons according to ASTM A532/A532M in a table. abrasion-resistant cast iron black etchants cast iron graphite morphology high-alloy cast iron microstructure white etchants LIKE OTHER CAST...
Abstract
This article describes two contemporary approaches for preparing cast iron specimens with a wide range of phases and constituents as well as different graphite morphologies. It introduces concepts and preparation materials that enable metallographers to shorten the process while producing better, more consistent results. Recommended procedures to prepare cast irons and examples of high-alloy cast iron microstructures revealed using a variety of etchants are presented. Several etchants are used to reveal the matrix microstructure, depending on the alloy content. The article discusses the use of black and white etchants and lists the compositions of abrasion-resistant cast irons according to ASTM A532/A532M in a table.
Book Chapter
Wear of Cast Irons
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006416
EISBN: 978-1-62708-192-4
...-alloyed irons are often desirable for their intrinsic toughness. It is possible to transform additional retained austenite by heat treating nickel-chromium white irons at approximately 730 °C (1350 °F). Such a treatment decreases matrix carbon and therefore raises the M s temperature. However, high...
Abstract
Cast irons have been widely used by engineers in applications that require low cost, excellent castability, good damping capacity, ease of machining, and wear resistance. This article discusses the classification of wear for cast irons: adhesive wear, abrasive wear, and erosive wear. Typical wear applications for a variety of cast iron grades are listed in a table. The article reviews the general wear characteristics of gray irons, compacted graphite (CG) irons, and ductile irons. It discusses the typical compositions and properties of white and chilled iron castings. Gray cast iron is the dominant material for both brake drums and disk brake rotors. The article reviews brake lining chemistry effects, graphite morphology effects, and external abrasive effects on brake drums. It concludes with information on cast iron grinding balls.
Book Chapter
Wear of Cast Irons
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006348
EISBN: 978-1-62708-179-5
.... Silicon has a substantial influence on the microstructure of any grade of white iron. Normally, silicon content exceeds 0.3%, and it may range as high as 2.2% in some of the high-chromium grades. During the solidification of unalloyed or low-alloy irons, silicon tends to promote the formation of graphite...
Abstract
This article presents typical wear applications for a variety of cast iron grades in a table. In general, wear is classified according to three major types: adhesive (frictional) wear (sliding and rolling) caused by contact of one metallic surface with another; abrasive wear caused by contact with metallic (shots, swarf) or nonmetallic abrasive materials; and erosive wear. The article discusses general wear characteristics of gray iron, compacted gray iron, and ductile iron. It provides information on the brake lining chemistry effects, graphite morphology effects, normal cast iron wear, local cast iron wear, and external abrasive effects on brake drums and disk brake rotors made of gray cast iron. The article concludes with a discussion on the application of cast iron for grinding balls.
Book Chapter
Basic Metallurgy of Cast Iron
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003106
EISBN: 978-1-62708-199-3
... iron iron-iron carbide-silicon system malleable cast iron microstructure white cast iron CAST IRON, like the term steel, identifies a large family of ferrous alloys. Cast irons primarily are iron alloys that contain more than 2% carbon and from 1 to 3% silicon. Wide variations in properties...
Abstract
Cast irons primarily are iron alloys that contain more than 2% carbon and from 1 to 3% silicon. This article provides a description of iron-iron carbide-silicon system; and discusses the classification, composition, and characteristics of cast irons, such as gray, ductile, malleable, compacted graphite, and white cast iron. A table shows the correspondence between commercial and microstructural classification, as well as final processing stage in obtaining common cast irons.
Book Chapter
Surface Engineering of Nickel and Nickel Alloys
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... Abstract This article discusses the procedures used for pickling nickel and nickel alloys. Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar...
Abstract
This article discusses the procedures used for pickling nickel and nickel alloys. Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar surface conditions are pickled in the same solutions using the same procedures. The article discusses three different surface conditions for pickling these nickel alloys: bright annealed white surface requiring removal of tarnish by flash pickling; bright annealed oxidized surface requiring removal of a layer of reduced oxide, sometimes followed by a flash pickle to brighten; and black or dark-colored surface requiring removal of adherent oxide film or scale. The article also reviews specialized pickling operations of nickel alloys and various cleaning and finishing operations, including grinding, polishing, buffing, brushing, and blasting.
1