1-20 of 1678 Search Results for

high-alloy tool steels

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006128
EISBN: 978-1-62708-175-7
... Abstract High-potential high-alloy tool steels (HATS) containing martensitic microstructure with undissolved hard phases are achieved by a number of complex heat treating cycles, predominantly tempering. This article focuses on three tempering treatments, namely, salt bath heat treatment...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006130
EISBN: 978-1-62708-175-7
... Abstract This article is a comprehensive collection of tables that list the nominal chemical composition of common powder metallurgy (PM) high-alloy tool steels, namely, PM high-speed, cold working, and corrosion-resistant tool steels. chemical composition cold working tool steel...
Image
Published: 01 December 1998
Fig. 21 Microstructure of two common high-carbon, high-alloy tool steels in the heat treated condition. (Top) AISI D2 tool steel. Etched with 4% picral plus HCl. (Bottom) AISI M2 tool steel. Etched with 10% nital. 1000× More
Image
Published: 30 September 2015
Fig. 3 Vacuum heat treating cycle for high-alloy tool steels More
Image
Published: 30 September 2015
Fig. 7 Recommended austenitizing times for high-alloy tool steels manufactured by hot isostatic pressing. Source: Ref 15 More
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005973
EISBN: 978-1-62708-168-9
... Abstract This article focuses on various heat-treating practices, namely, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and nitriding for cold-work tool steels. The cold-work tool steels include medium-alloy air-hardening tool steels, high-carbon...
Image
Published: 30 September 2015
Fig. 1 Typical salt bath heat treating cycle for a high-alloy tool steel with three soaks, salt bath quenching, and triple tempering More
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006129
EISBN: 978-1-62708-175-7
... Abstract This article describes the effects of undissolved carbides formed by segregation of alloying elements on the hardness of the powder-metallurgical (PM) high-alloy tool steels (HATS). It explains the calculation of exact stoichiometric carbon content that depends on the required...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006127
EISBN: 978-1-62708-175-7
... Abstract Powder metallurgy (PM) high-alloy tool steels (HATS) have unique properties that assist them in solving various problems related to machining of metal components. This article describes the cost-intensive PM processing routes of HATS, as well as their major properties, including...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006131
EISBN: 978-1-62708-175-7
... Abstract The microstructure in the longitudinal direction of conventional high-alloy tool steels (HATS) depends very much on the degree of hot working. Comparing different processes, the highest processing temperature proves to be decisive for coarseness of the microstructure. This article...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003766
EISBN: 978-1-62708-177-1
... with as-quenched high-alloy tool steels, it may be helpful to fracture the specimen. This will produce a flat, damage-free surface due to the extreme brittleness of such steels. The fractured surface can then be carefully ground, with adequate cooling, and polished for examination. For high-hardness, high...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005946
EISBN: 978-1-62708-168-9
... from cracking during heat treating. Many alloy tool steels also are widely used for machinery components and structural applications where particularly severe requirements must be met, such as high-temperature springs, ultrahigh-strength fasteners, special-purpose valves, punches and dies, wear...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005979
EISBN: 978-1-62708-168-9
... is available. Table 3 contains the results of calculations for W1, O1, L3, and F1 steels. In addition, Table 3 lists estimated ranges for size changes in five medium and high-alloy tool steels. In all cases it is assumed that the section size is small enough and the quenching action fast enough to result...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001042
EISBN: 978-1-62708-161-0
... include preheating, austenitizing, quenching, and tempering. This article describes manufacturing properties, cutting tool properties, and applications of P/M high-speed tool steels. It discusses the development of P/M high-speed alloy steels that cannot be made by conventional methods because...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005958
EISBN: 978-1-62708-168-9
..., resulting from tool sizes ranging from small twist drills only several grams or millimeters to several tons or meters of molds for plastic parts or casting dies. Alloy compositions also vary widely, ranging from practically unalloyed carbon steels to high-speed steels with over 20% of alloying elements...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005140
EISBN: 978-1-62708-186-3
... and copper alloys; and carbide tools for forming carbon steel, stainless steel, and aluminum. Aluminum bronzes have excellent resistance to galling and are desirable for dies in applications in which the best finish is required on carbon steel or stainless steel parts. However, for medium-to-high production...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
... dual-phase low-carbon sheet steel. Etched with 20% Na 2 S 2 O 5 in H 2 O. 1000× The higher alloy, high-carbon tool steels contain undissolved alloy carbides in a matrix of tempered martensite after commercial heat treatment. When properly heat treated, many of these alloys also contain small...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002121
EISBN: 978-1-62708-188-7
... Abstract This article discusses the classifications of high-speed tool steels and describes alloying elements and their effects on the properties of high-speed tool steels. It analyzes the heat treatment of high-speed tool steels, namely, preheating, austenitizing, quenching, and tempering...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... or in the specifications ( Ref 15 ). In-Service Part Failures Caused by Metallurgical Factors In many workpiece bars and blanks, the carbide spheroids in high-carbon, high-alloy tool steels, such as the AISI M x , T x , H x , D x , O x , S x , L x , P x , and W x tool steels, are often large and widely dispersed...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002122
EISBN: 978-1-62708-188-7
... performance under difficult conditions when good toughness is essential ( Ref 1 ). Further, powder processing allows the production of high-speed tool steels with much greater alloy contents than are practical or possible by conventional ingot methods. Two examples of such highly alloyed high-speed tool...