Skip Nav Destination
Close Modal
By
George T. (Rusty) Gray, III
By
Meysam Haghshenas, Ali Nasiri
By
G. Subhash, G. Ravichandran
By
George T. (Rusty) Gray, III, William R. Blumenthal
By
P.S. De, N. Kumar, J.Q. Su, R.S. Mishra
Search Results for
high strain rate
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1503
Search Results for high strain rate
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
High Strain Rate Tension and Compression Tests
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003294
EISBN: 978-1-62708-176-4
... Abstract This article reviews high strain rate compression and tension test methods with a focus on the general principles, advantages, and limitations of each test method. The compression test methods are cam plastometer test, drop tower compression test, the Hopkinson bar in compression...
Abstract
This article reviews high strain rate compression and tension test methods with a focus on the general principles, advantages, and limitations of each test method. The compression test methods are cam plastometer test, drop tower compression test, the Hopkinson bar in compression, and rod impact (Taylor) test. The flyer plate impact test, expanding ring test, split-Hopkinson bar in tension, and a test using a rotating wheel used for high strain rate tension are also discussed.
Book Chapter
High Strain Rate Shear Testing
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003295
EISBN: 978-1-62708-176-4
... Abstract This article reviews the dynamic factors, experimental methods and setup, and result analysis of different types of high strain rate shear tests. These include high strain rate torsion testing, double-notch shear testing and punch loading, drop-weight compression shear testing, thick...
Abstract
This article reviews the dynamic factors, experimental methods and setup, and result analysis of different types of high strain rate shear tests. These include high strain rate torsion testing, double-notch shear testing and punch loading, drop-weight compression shear testing, thick-walled cylinder testing, and pressure-shear plate impact testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003293
EISBN: 978-1-62708-176-4
... Abstract High strain rate testing is important for many engineering structural applications and metalworking operations. This article describes various methods for high strain rate testing. Several methods have been developed, starting with the pioneering work of John Hopkinson and his son...
Abstract
High strain rate testing is important for many engineering structural applications and metalworking operations. This article describes various methods for high strain rate testing. Several methods have been developed, starting with the pioneering work of John Hopkinson and his son, Bertram Hopkinson. Based on these contributions and also on an important paper by R.M. Davies, H. Kolsky invented the split-Hopkinson pressure bar, which allows the deformation of a sample of a ductile material at a high strain rate, while maintaining a uniform uniaxial state of stress within the sample.
Image
in Modeling of Residual Stress and Machining Distortion in Aerospace Components
> Metals Process Simulation
Published: 01 November 2010
Image
Influence of joining method on stress-time curves for high strain rate tens...
Available to PurchasePublished: 01 January 2000
Fig. 16 Influence of joining method on stress-time curves for high strain rate tension test specimens
More
Image
Schematic representation of high strain rate pressure-shear impact configur...
Available to PurchasePublished: 01 January 2000
Fig. 25 Schematic representation of high strain rate pressure-shear impact configuration. u o is the initial velocity of the flyer plate in the normal direction, and ν o is the initial velocity of the flyer plate in the transverse direction. V o is the projectile velocity and θ
More
Image
Sample geometry for high strain rate Bauschinger experiments. Dimensions in...
Available to PurchasePublished: 01 January 2000
Fig. 16 Sample geometry for high strain rate Bauschinger experiments. Dimensions in millimeters. Source: Ref 14
More
Image
Pressure-shear high-strain-rate testing. (a) Test configuration. (b) Lagran...
Available to PurchasePublished: 01 January 2000
Fig. 6 Pressure-shear high-strain-rate testing. (a) Test configuration. (b) Lagrangian t-X diagram for pressure-shear high-strain-rate recovery experiment. Source: Ref 18 , 19
More
Image
Velocity histories from a pressure-shear high-strain-rate experiment (shot ...
Available to PurchasePublished: 01 January 2000
Fig. 9 Velocity histories from a pressure-shear high-strain-rate experiment (shot No. 7-1025 in Table 4 ). (a) Normal velocity history. The time scale starts with the arrival of the longitudinal wave to the anvil-free surface. (b) Transverse velocity history. The time scale starts
More
Image
Published: 01 January 2000
Image
High-temperature, high-pressure test vessel for slow strain rate testing. S...
Available to PurchasePublished: 01 January 2003
Fig. 26 High-temperature, high-pressure test vessel for slow strain rate testing. Source: Ref 140
More
Image
Stress-strain response of high-purity silver as a function of strain rate a...
Available to PurchasePublished: 01 January 2000
Fig. 10 Stress-strain response of high-purity silver as a function of strain rate and temperature
More
Image
(a) Normalized stress versus normalized strain-rate plot for SePD (high-pre...
Available to PurchasePublished: 01 December 2009
Fig. 6 (a) Normalized stress versus normalized strain-rate plot for SePD (high-pressure torsion, as-processed grain size 83 nm) 1420 aluminum alloy. Source: Ref 42 . Other constitutive equations have been plotted along with experimental data of the ECAE 1420 alloy for comparison. (b
More
Image
Shear strain rate versus shear stress (logarithmic scale) for high purity Z...
Available to PurchasePublished: 01 January 2000
Fig. 8 Shear strain rate versus shear stress (logarithmic scale) for high purity Zn-22Al for various grain sizes at 493 K. Source: Ref 14
More
Image
Shear strain rate versus shear stress (logarithmic scale). (a) For high-pur...
Available to PurchasePublished: 01 January 2000
Fig. 14 Shear strain rate versus shear stress (logarithmic scale). (a) For high-purity Zn-22Al having a grain size of 3.5 μm at various temperatures from 433 to 493 K. Source: Ref 14 . (b) For high-purity Pb-62Sn having a grain size of 8 μm at various temperatures from 392 to 422 K. Source
More
Book Chapter
Classic Split-Hopkinson Pressure Bar Testing
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003296
EISBN: 978-1-62708-176-4
... Abstract This article describes the techniques involved in measuring the high-strain-rate stress-strain response of materials using a split-Hopkinson pressure bar (SHPB). It focuses on the generalized techniques applicable to all SHPBs, whether compressive, tensile, or torsion. The article...
Abstract
This article describes the techniques involved in measuring the high-strain-rate stress-strain response of materials using a split-Hopkinson pressure bar (SHPB). It focuses on the generalized techniques applicable to all SHPBs, whether compressive, tensile, or torsion. The article discusses the methods of collecting and analyzing compressive high-rate mechanical property data. A review of the critical experimental variables that must be controlled to yield valid and reproducible high-strain-rate stress-strain data is also included. Comparisons and contrasts to the differences invoked when using a tensile Hopkinson bar in terms of loading technique, sample design, and stress-state stability, are discussed.
Book Chapter
Nanoindentation Hardness, Strain-Rate Sensitivity, and Corrosion Response of Additively Manufactured Metals
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006952
EISBN: 978-1-62708-439-0
... Abstract This article provides a detailed discussion on nanoindentation hardness, high-strain-rate behavior and strain-rate sensitivity, and corrosion response of additively manufactured (AM) metals. It summarizes the most commonly used AM alloys for applications in harsh environments...
Abstract
This article provides a detailed discussion on nanoindentation hardness, high-strain-rate behavior and strain-rate sensitivity, and corrosion response of additively manufactured (AM) metals. It summarizes the most commonly used AM alloys for applications in harsh environments and their respective corrosion responses in various service environments. It also provides several case studies on location-dependent properties, microstructural evolution, and indentation strain-rate sensitivity of various additively manufactured alloys.
Book Chapter
Split-Hopkinson Pressure Bar Testing of Ceramics
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003299
EISBN: 978-1-62708-176-4
... Abstract Split-Hopkinson pressure bar (SHPB) testing is traditionally used for determining the plastic properties of metals (which are softer than the pressure bar material) at high strain rates. However, the use of this method for testing ceramic has various limitations. This article provides...
Abstract
Split-Hopkinson pressure bar (SHPB) testing is traditionally used for determining the plastic properties of metals (which are softer than the pressure bar material) at high strain rates. However, the use of this method for testing ceramic has various limitations. This article provides a discussion on the operational principle of the traditional SHPB technique and the relevant assumptions in the derivation of the stress-strain relationship. It describes the inherent limitations on the validity of these assumptions in testing ceramics and discusses the necessary modifications in SHPB design and test procedure for evaluating high-strength brittle ceramics. The article includes information on the maximum strain rate that can be obtained in ceramics using an SHPB and the necessity of incident pulse shaping. It also reviews the specimen design considerations, interpretation of experimental results obtained from SHPB testing of ceramics, and effectiveness of the proposed modifications.
Book Chapter
Split-Hopkinson Pressure Bar Testing of Soft Materials
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003298
EISBN: 978-1-62708-176-4
... materials. These techniques include the data-reduction techniques and assumptions required to use polymer pressure bars, the importance of sample-size considerations to polymer testing, and temperature-control methodologies to measure the high-strain-rate uniaxial stress response of polymers and other soft...
Abstract
This article addresses the specialized aspects required to accurately quantify the behavior of soft materials, including polymers and polymeric composites, using the split-Hopkinson pressure bar (SHPB). It details some of the specialized SHPB techniques that facilitate testing soft materials. These techniques include the data-reduction techniques and assumptions required to use polymer pressure bars, the importance of sample-size considerations to polymer testing, and temperature-control methodologies to measure the high-strain-rate uniaxial stress response of polymers and other soft materials.
Book Chapter
Fundamentals of Friction Stir Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
... Abstract Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental...
Abstract
Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental temperature measurements during FSW of various metals. It considers the physical explanation of the heat input during FSW and the possible methods of their estimation. The article presents the experimental results of two analytical models, supplemented by experimental/numerical flow models on material flow during FSW. The types of defects, processing parameters affecting the generation of these defects, and results of theoretical models and simulations to understand the formation and control of defects during FSW are discussed. The article concludes with information on the microstructure and its distribution produced during FSW.
1