1-20 of 364 Search Results for

high pressure turbine blades

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001051
EISBN: 978-1-62708-161-0
... temperature and increased stage loading result in fewer parts, shorter engine lengths, and reduced weight. Engine operating costs can be reduced if higher temperatures are possible without increasing part life-cycle costs. Critical turbine components include high-pressure turbine blades, vanes, and disks...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
... , 36 , 37 ). In addition, there is water droplet erosion of last rows of LP turbine blades ( Ref 2 , 3 , 6 , 29 , 38 ) and solid-particle erosion in the high-pressure and intermediate-pressure turbines and turbine valves caused by exfoliation of oxides in superheaters, reheaters, and steam piping...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005737
EISBN: 978-1-62708-171-9
... airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost. aerospace engines combustors gas turbines high-power turbine blades high-pressure compressors...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004133
EISBN: 978-1-62708-184-9
...) and ultrasupercritical (USC) power plants. These components include high-pressure steam piping and headers, superheater and reheater tubing, water wall tubing in the boiler, high-and intermediate-pressure rotors, rotating blades, and bolts in the turbine section. The article reviews the boiler alloys, used in SC and USC...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
... labyrinth seals are common in high- and low-pressure turbine applications. The third main type of sealing system is unshrouded (or open-tip) blade seals ( Fig. 1c ), in which a blade tip cuts directly into a softer abradable material counterpart that is attached to a compressor or turbine casing...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... assembly was modified by the manufacturer, which integrated the cover plates and blade into a single casting. Example 8: High-Cycle Fatigue Failure of a Steam Turbine Blade A steam turbine, driven by a coal-fired boiler, experienced a failure from the low-pressure section of the turbine at the final...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006428
EISBN: 978-1-62708-192-4
... turbine coupled to a generator in a Rankine cycle machine. Gas and steam turbines can also work in tandem in a combined cycle machine, wherein the exhaust gases from a gas turbine are passed through a heat recovery steam generator which generates high pressure and temperature steam which in turn drives...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
.... Affected Systems and Materials Material degradation by liquid-droplet erosion is a significant problem in just a few kinds of engineering systems: blades in the low-pressure ends of steam turbines where the steam is “wet,” and aircraft, missiles, and helicopter rotors flying at high speeds through...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006378
EISBN: 978-1-62708-192-4
... done in this subject has been in connection with just two major problems: moisture erosion of low-pressure steam turbine blades operating with wet steam, and rain erosion of aircraft or missile surfaces and helicopter rotors. However, the rain erosion of wind turbine blades has increasingly become...
Image
Published: 01 August 2013
Fig. 9 Overview of abradable coating materials and their designated hardness (HR15Y) specified ranges according to blade material type compatibility and for different service temperature regimes. RT, room temperature; LPC, low-pressure compressor; HPC, high-pressure compressor; HPT, high More
Image
Published: 01 November 1995
Fig. 14 Distribution of maximum principal stress on the concave (high-pressure) side of a typical passenger car turbine wheel blade. Contours correspond to 177,000 rev/min and a turbine inlet temperature of 955 °C (1750 °F). Stress contours are shown in MPa. More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... Abstract High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... of the component is so high that additional cooling of the component is needed and/or a thermal barrier coating is needed to reduce the metal temperature. Hot Corrosion Hot corrosion can be very destructive, as shown in Fig. 5 . Fig. 5 Severe attack of an aeroderivative gas turbine blade by hot...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... such as rain erosion of solid materials, gas turbine blades, wind turbine blades, airplane components, and pipe-wall thinning in nuclear/fossil power plants. Because of the fundamental interest in the mechanics of fluids and solids, this topic has been reviewed by Heymann ( Ref 1 ) and Richman ( Ref 2...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
..., as in a jet or rotary pump, vapor bubbles collapse at high-pressure areas and destroy the protective film on the metal surface or disrupt the metal itself. Cavitation erosion occurs typically on rotors or pumps, on the trailing faces of propellers and of water turbine blades, and on the water-cooled side...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004131
EISBN: 978-1-62708-184-9
... by foreign objects ( Ref 32 ), and weld tip repair of high pressure turbine blades ( Ref 33 ), advanced braze repairs for nozzle guide vanes, and component rejuvenation through hot isostatic pressing) Improvement of the structural performance or damage tolerance of engine components, achieved by a range...
Book Chapter

Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003685
EISBN: 978-1-62708-182-5
... operate at 700 to 870 °C (1290 to 1600 °F) and are exposed to salt corrosion; and industrial turbines that may operate at 760 to 925 °C (1400 to 1700 °F) and use moderately refined fuels, often with high sulfur contents. Industrial turbines may use a variety of fuels and operate in marine, arctic, or more...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006354
EISBN: 978-1-62708-192-4
..., high pitch line speed, and thick lubricant films. For example, steam-turbine gears operating almost continuously at 150 m/s (492 ft/s) pitch-line speed still had original machining marks on their teeth after operating for 20 years. However, most gears operate between boundary and full-film lubrication...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002164
EISBN: 978-1-62708-188-7
..., including turbine blade cooling holes, turbine vane cooling holes, turbine disk cooling passages, oil passages, and fuel nozzles. It describes the limitations and advantages of the STEM process. The article discusses the various tool parts of the STEM system, including the holding fixture, guide...