Skip Nav Destination
Close Modal
By
J.W. Elmer, P.W. Hochanadel, K. Lachenberg, C. Caristan, T. Webber
By
S.S. Glickstein, E. Friedman, R.P. Martukanitz
By
Gerald A. Knorovsky
By
P.W. Hochanadel, J.W. Elmer, K. Lachenberg, P. Burgardt, D.D. Kautz
By
S.S. Glickstein, E. Friedman
By
K. Sampath, W.A. Baeslack III
By
Abdalla R. Nassar, Edward W. Reutzel
By
Kenn Lachenberg, Scott Stecker, Karen Taminger, Gary La Flamme
By
J. Mazumder
Search Results for
high energy density electron welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 693
Search Results for high energy density electron welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Introduction to High Energy Density Electron and Laser Beam Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005627
EISBN: 978-1-62708-174-0
... welding electrons focused beam diameter high energy density electron welding keyhole-mode welding laser beam welding photons power density boundary HIGH ENERGY DENSITY BEAM WELDING refers to electron or laser processes where a beam of electrons or photons, respectively, can be focused to power...
Abstract
This article provides a history of electron and laser beam welding, discusses the properties of electrons and photons used for welding, and contrasts electron and laser beam welding. It presents a comparison of the electron and laser beam welding processes. The article also illustrates constant power density boundaries, showing the relationship between the focused beam diameter and the absorbed beam power for approximate regions of keyhole-mode welding, conduction-mode welding, cutting, and drilling.
Book Chapter
Characterization and Modeling of the Heat Source
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding. arc welding direct heat source electric arc welding electron beam welding fusion welding gas metal arc welding gas tungsten arc welding heat-source...
Abstract
Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding.
Book Chapter
Electron-Beam Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001369
EISBN: 978-1-62708-173-3
... Abstract Electron-beam welding (EBW) is a high-energy density fusion process that is accomplished by bombarding the joint to be welded with an intense (strongly focused) beam of electrons that have been accelerated up to velocities 0.3 to 0.7 times the speed of light at 25 to 200 kV...
Abstract
Electron-beam welding (EBW) is a high-energy density fusion process that is accomplished by bombarding the joint to be welded with an intense (strongly focused) beam of electrons that have been accelerated up to velocities 0.3 to 0.7 times the speed of light at 25 to 200 kV, respectively. This article discusses the principles of operation, as well as the advantages and limitations of EBW. It reviews the basic variables employed for controlling the results of an electron-beam weld. These include accelerating voltage, beam current, welding speed, focusing current, and standoff distance. The article reviews the operation sequence and safety aspects of EBW.
Book Chapter
Microjoining with Laser and Electron Beams
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005639
EISBN: 978-1-62708-174-0
... beam microwelding fluid flow heat flow high energy density beam laser beam laser beam microwelding laser droplet welding laser spike welding melting microjoining microjoints microwelds postweld metrology SHADOW welding solidification MICROJOINING with high energy density beams...
Abstract
Microjoining with high energy density beams is a new subject in the sense that the progress of miniaturization in industry has made the desire to make microjoints rapidly and reliably a current and exciting topic. This article summarizes the current state of microjoining with both electron and laser beams. It considers the elementary physical processes such as heat and fluid flow to introduce the reader to the phenomena that affect melting, coalescence, and solidification needed for a successful microweld. The various forces driving (and resisting) fluid flow are analyzed. The article discusses the equipment suitable for microjoining and the metallurgical consequences and postweld metrology of the process. It also provides examples of developmental welds employing laser and electron beam microwelding techniques.
Book Chapter
Electron Beam Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005615
EISBN: 978-1-62708-174-0
... ELECTRON BEAM WELDING (EBW) is a high energy density beam welding process that is accomplished by bombarding the joint to be welded with an intense beam of electrons that have been accelerated up to velocities 0.3 to 0.7 times the speed of light at 30 to 200 kV, respectively. Some of the details were given...
Abstract
This article introduces the operating principles and modes of operation for high-vacuum (EBW-HV), Medium-vacuum (EBW-MV), and nonvacuum (EBW-NV) electron beam welding. Equipment, process sequence, part preparation, process control, and weld geometry are described for electron beam welding. Advantages are described in terms of welding near heat sensitive components or materials and producing deep penetration or shallow welds with the same equipment.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... of the (a) melt-in or conduction versus (b) keyhole modes in high-energy-density welding processes, including plasma arc welding, electron beam welding, and laser beam welding. Source: Ref 2 As the beam energy source moves along (at the welding speed), the molten material surrounding the vapor cavity...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
.../in. 2 ). (See the article “Introduction to High Energy Density Electron and Laser Beam Welding” in this Volume for an introduction to the nature of laser beam radiation.) Lasers have been promoted as potentially useful welding tools for a variety of applications. By 1965, a variety of laser...
Abstract
This article provides an overview of the fundamentals, mechanisms, process physics, advantages, and limitations of laser beam welding. It describes the independent and dependent process variables in view of their role in procedure development and process selection. The article includes information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding.
Book Chapter
Characterization and Modeling of the Heat Source
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001481
EISBN: 978-1-62708-173-3
... modeling of the welding heat source is generally complex, because of the nature of energy transfer to the workpiece, whether the source of that energy is an arc, a high-energy-density beam of electrons or laser light, or joule heating. For numerical modeling purposes, heat input to the weldment is usually...
Abstract
This article briefly reviews the physical phenomena that influence the input-energy distribution. It discusses the several simplified and detailed heat source models used in the modeling of arc welding, high-energy-density welding, and resistance welding processes.
Book Chapter
Selection and Weldability of Dispersion-Strengthened Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
... conditions such as high energy density and minimum energy input, that increase the temperature gradients in both the fusion zone and the heat-affected zone (HAZ) and increase the overall weld cooling rate, will be required to minimize the widths of the partially melted region and the HAZ. Such welding...
Abstract
Conventional high-strength aluminum alloys produced via powder metallurgy (P/M) technologies, namely, rapid solidification (RS) and mechanical alloying (mechanical attrition) have high strength at room temperature and elevated temperature. This article focuses on the metallurgy and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature deformation behavior of these alloys, which affect the selection and application of fusion and solid-state welding processes. The article provides specific examples of material responses to welding conditions and highlights the microstructural development in the weld zone.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
... Abstract Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes...
Abstract
Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes. It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards.
Image
Schematic illustration of the (a) melt-in or conduction versus (b) keyhole ...
Available to PurchasePublished: 31 October 2011
Fig. 15 Schematic illustration of the (a) melt-in or conduction versus (b) keyhole modes in high-energy-density welding processes, including plasma arc welding, electron beam welding, and laser beam welding. Source: Ref 2
More
Book Chapter
Other Fusion Welding Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... in that nonferrous filler metals are used, and bonding is achieved without melting the base metal. Braze welding resembles welding because it can be used for filling grooves and for building up fillets as required. Electron Beam Welding ELECTRON BEAM WELDING (EBW) is a high-energy-density fusion process...
Abstract
This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding, and thermite welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001336
EISBN: 978-1-62708-173-3
... and location. Anode Welding process parameters (for example, current and voltage) control the arc discharge at the cathode. Although the electron flow enters the anode through the anode spot and constitutes 85% of the energy going into the weld pool, thus making current density the single most important...
Abstract
The gas-tungsten arc welding (GTAW) process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. The arc discharge requires a flow of electrons from the cathode through the arc column to the anode. This article discusses two cases of electron discharge at the cathode: thermionic emission and nonthermionic emission, also called cold cathode, or field emission. It schematically illustrates relative heat transfer contributions to workpiece in the GTAW process. The article provides information on the effects of cathode tip shape and shielding gas composition in the GTAW process.
Image
2.25Cr-1Mo steel plate, single-pass electron beam weld. Heat input: 0.5 MJ/...
Available to PurchasePublished: 01 December 2004
Fig. 7 2.25Cr-1Mo steel plate, single-pass electron beam weld. Heat input: 0.5 MJ/m. Macrostructure shows high depth-to-width ratio of the fusion zone, which is typical of high-energy density welding processes. Etchant: 85 mL H 2 O + 15 mL HNO 3 + 5 mL methanol. Magnification: 2.8×
More
Book Chapter
Energy Sources for Fusion Additive Manufacturing Processes
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... various aspects of the GMAW process ( Ref 29 – 31 ). Laser In contrast to arc welding processes, electron beam and laser welding are distinguished by their capability to impart a very high energy density. The amount of focused energy directed at a substrate can easily exceed 10 9 W/m 2...
Abstract
Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed, with an emphasis on their principles of operation, key processing variables, and the influence of each source on the transfer of heat and material. Common energy sources used for metals AM processes, particularly powder-bed fusion and directed-energy deposition, are also discussed. Brief sections at the end of the article discuss the factors dictating the choice of each of these energy sources and provide information on alternative sources of AM.
Book Chapter
Nontraditional Applications of Electron Beams
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005611
EISBN: 978-1-62708-174-0
... for welding. However, this powerful energy concentration is easily controlled in power magnitude (accelerating voltage and beam current), power density (defocused beam), and beam position (computer-controlled deflection). The extremely high power density in the EB focal spot combined with the constant...
Abstract
This article focuses on the use of electron beam (EB) for near-net shape processing based on the wire feed material-delivery method. EB deposition processes start with a 3-D model designed in a computer-aided design (CAD) environment, where the deposition path and process parameters are generated. The article provides a description of the electron beam direct manufacturing (EBDM) system used for manufacturing of target parts with the aid of a case study. The control of the essential variables of dynamic beam deflection is also reviewed. The article also includes information on the applications of high-frequency multibeam processes, namely, selective surface treatment, multiple-pool welding, and pre- and post-heat treating.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001332
EISBN: 978-1-62708-173-3
... in Fig. 3 can be generated. Heat sources with power densities that are of the order of 1000 W/cm 2 , such as oxyacetylene flames or electro-slag welding, require interaction times of 25 s with steel, whereas laser and electron beams, at 1 MW/cm 2 , need interaction times on the order of only 25 μs...
Abstract
Welding and joining processes are essential for the development of virtually every manufactured product. This article discusses the fundamentals of fusion welding processes, with an emphasis on the underlying scientific principles. It reviews the role of energy-source intensity and the width of the heat-affected zone in fusion welding processes. The article contains figures from which the properties of any heat source can be estimated readily.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... LASER BEAM WELDING (LBW) uses high-density coherent optical energy, such that the coherent nature of the laser beam allows it to be focused to a small spot, leading to high energy densities of 10 5 to 10 7 W/cm 2 (6 × 10 5 to 6 × 10 7 W/in. 2 ). Until the 1970s, laser welding had been restricted...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
Book Chapter
Procedure Development and Practice Considerations for Laser-Beam Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... and special practices related to LBW will be discussed. Process Selection Laser-beam welding is characterized by its low distortion and low specific energy input. It is an accurate inertialess method capable of high welding speeds for most materials, including many difficult-to-join materials...
Abstract
Laser-beam welding (LBW) is a joining process that produces coalescence of material with the heat obtained from the application of a concentrated coherent light beam impinging upon the surface to be welded. This article describes the steps that must be considered when selecting the LBW process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001351
EISBN: 978-1-62708-173-3
... Alloys Bonded to Austenitic Stainless Steel , High Energy Rate Fabrication , Meyers M.A. and Schroeder J.W. , Ed., Vol 70 , ASME Pressure Vessels and Piping Div. , 1982 , p 15 – 27 15. Chadwick M.D. , Howd D. , Wildsmith G. , and Cairns J.H. , Br. Weld. J...
Abstract
Explosion welding (EXW), also known as explosive bonding, is accomplished by a high-velocity oblique impact between two metals. This article describes the practice of producing an explosive bond/weld and draws on many previous research results in order to explain the mechanisms involved. It provides a schematic illustration of the arrangement used in the parallel gap explosive bonding process. The article discusses several important concepts pertaining to explosive parameters, hydrodynamic flow, jetting, and metal properties. It summarizes the criteria used to model the explosive bonding process. The article describes bond morphology in terms of wave formation, bond microstructure, and bond strength determination.
1