Skip Nav Destination
Close Modal
Search Results for
hexagonal systems
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 488 Search Results for
hexagonal systems
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 4 Illustration of slip planes, slip directions, and slip systems in hexagonal close-packed (hcp), face-centered cubic (fcc), and body-centered cubic (bcc) structures. Source: Ref 2
More
Image
in Modeling and Simulation of Texture Evolution during the Thermomechanical Processing of Titanium Alloys
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 3 Common slip systems for hexagonal close-packed (alpha) titanium crystals. (a) Basal < a >. (b) Prism < a >. (c) Pyramidal < c + a >
More
Image
in Crystallography and Engineering Properties of Ceramics
> Engineered Materials Handbook Desk Edition
Published: 01 November 1995
Fig. 36 Structure of borides. Source: Ref 81 , 82 , 83 Formula Metal Crystal system and structural type Arrangement of boron atoms M 4 B Pd, Pt Cubic, Pt 4 B-type Isolated atoms M 2 B Ta, Cr, Mo, W, Fe, Ni, Co Tetragonal, CuAl 2 -type Isolated atoms M 5 B 3
More
Image
Published: 15 January 2021
Fig. 1 Embrittlement and nonembrittlement couples in solid/liquid systems. hcp, hexagonal close-packed; bcc, body-centered cubic; fcc, face-centered cubic. Source: Ref 5
More
Image
Published: 01 August 2013
Fig. 8 Arrhenius plot of diffusivity of various metal systems. bcc, body-centered cubic; hcp, hexagonal close-packed; fcc, face-centered cubic. Adapted from Ref 12
More
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006544
EISBN: 978-1-62708-183-2
... in metallic systems that they are often identified by three-letter abbreviations that combine the space lattice with the crystal system. For example, bcc is used for body-centered cubic (two atoms per unit cell), fcc for face-centered cubic (four atoms per unit cell), and cph for close-packed hexagonal (two...
Abstract
The crystal structure of a material is an important aspect of corrosion and oxidation processes. This article provides a general introduction to the crystal structure of materials, providing information on the crystal systems, lattice dimensions, nomenclature, and solid-solution mechanisms used to characterize structures. It illustrates the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to the Pearson symbol. The space lattice and crystal system, space-group notation, and prototype for each crystal are also illustrated.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006467
EISBN: 978-1-62708-190-0
... hexagonal bars. (a) Normal-beam method to detect flaws deep inside bar. (b) Angle-beam method to detect surface and near-surface flaws. Source: Ref 1 Specifications of an ultrasonic flaw-detection system for cold-drawn hexagonal bars Table 2 Specifications of an ultrasonic flaw-detection system...
Abstract
This article focuses on nondestructive inspection of steel bars. The primary objective in the nondestructive inspection of steel bars and wire is to detect conditions in the material that may be detrimental to the satisfactory end use of the product. The article discusses various types of flaws encountered in the inspection of steel bars, including porosity, inclusions, scabs, cracks, seams, and laps. Inspection methods, such as magnetic-particle inspection. liquid penetrant inspection, ultrasonic inspection, and electromagnetic inspection, of steel bars are also described. The article provides a discussion on electromagnetic systems, eddy-current systems, and magnetic permeability systems for detection of flaws on steel bars. It concludes with a description of nondestructive inspection of steel billets.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003037
EISBN: 978-1-62708-200-6
... other resin systems can be used. Ideally, the resin content should be approximately 50%. Therefore, a range of ribbon thicknesses must be available to make cores of various densities, while maintaining the resin content as close to 50% as possible. To date, honeycomb has been produced from more than...
Abstract
Honeycomb is a product consisting of very thin sheets attached to form connecting cells. This article briefly explains the construction, core characteristics, properties, and testing methods of the honeycomb structures. It discusses the special processes carried out in customizing the shape of core to fit customer's specific needs. The article provides information on the basic concept of creating sandwich structures and its corresponding aspects like material selection, design guidelines, and structural efficiency.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003716
EISBN: 978-1-62708-182-5
... in gases has been primarily a problem in combustion systems. Thus, the gas-metal reactions are usually referred to as oxidation in its broad chemical sense, whether the reaction is with pure oxygen, water, sulfur dioxide (SO 2 ), or whatever the gas might be. The corrosion product (oxide layer) is termed...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
...-centered cubic (four atoms per unit cell), and cph for close-packed hexagonal (two atoms per unit cell). (The latter space-lattice/crystal system is also commonly referred to as hexagonal close-packed, hcp, in metallurgical literature.) It should be noted that in the schematic representations shown...
Abstract
Crystal structure is the arrangement of atoms or molecules in the solid state that involves consideration of defects, or abnormalities, in idealized atomic/molecular arrangements. The three-dimensional aggregation of unit cells in the crystal forms a space lattice or Bravais lattice. This article provides a brief review of the terms and basic concepts associated with crystal structures. It also discusses some of the significant defects obstructing plastic flow in real crystals, namely point defects, line defects, stacking faults, twins, and cold work. Several tables in the article provide information on the crystal structures and lattice parameters of allotropes of metallic elements.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003735
EISBN: 978-1-62708-177-1
... interface has been established, although some controversy still surrounds this issue. Massive transformations occur in a wide array of materials, both in pure metals and in alloys. A short list of model binary systems is shown in Table 1 , although it should be noted that this list is not meant...
Abstract
Massive transformations are thermally activated phenomena and exhibit nucleation and growth characteristics primarily controlled by the interface between parent and product phases that is generally considered incoherent. This article focuses on the nucleation and growth kinetics involved in massive transformations and illustrates the resulting phases and structures in ferrous and nonferrous metals and alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003165
EISBN: 978-1-62708-199-3
...% tensile elongation) at room temperature, which is attributed to a large covalent component in its atomic bonding in the c -axis direction and to its hexagonal close-packed (hcp) crystal structure, which is limited at room temperature to only one slip direction on two crystal planes, basal and prism...
Abstract
Beryllium possesses an unusual combination of physical and mechanical properties, suiting it for specialized applications where its relatively high cost can be justified. It has very low density, a moderately high melting point, high elastic modulus, and good electrical and thermal conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when handling beryllium.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003588
EISBN: 978-1-62708-182-5
... of the standard Gibbs energy change of formation of oxides and the corresponding dissociation pressures of the oxides as a function of temperature. It demonstrates the Kellogg diagram which shows stability range in more complicated multioxidant systems. The article explains the determination of partial pressures...
Abstract
Metals can react chemically with oxygen when exposed to air. Essential to an understanding of the gaseous corrosion of a metal are the crystal structure and the molar volume of the metal on which the oxide builds, both of which may affect growth stresses in the oxide. This article presents crystal structures and thermal properties of pure metals and oxides in a tabular form. The free energy of reaction, which describes the oxidation process of a pure divalent metal, is presented. The article illustrates the Richardson-Jeffes diagram, which is used in the determination of the standard Gibbs energy change of formation of oxides and the corresponding dissociation pressures of the oxides as a function of temperature. It demonstrates the Kellogg diagram which shows stability range in more complicated multioxidant systems. The article explains the determination of partial pressures of gas mixtures and partial pressures of volatile oxidation products.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001106
EISBN: 978-1-62708-162-7
... are usually alkali, alkaline earth metals, or compounds. Cubic boron nitride can be grown from a variety of solvent/catalysts, including metal systems similar to those used for diamond synthesis ( Ref 8 ). Because the pressure-temperature conditions for the conversion of hexagonal boron nitride (HBN) to CBN...
Abstract
Synthetic diamond and cubic boron nitride are among a class of superhard materials from the boron-carbon-nitrogen-silicon family of elements. This article focuses on the two materials, the forms in which they are produced, and their respective properties. Synthetic diamond and cubic boron nitride compounds are available in the form of grit and sintered polycrystalline blanks of various size, shape, and composition. The article explains how superabrasive grains made from these materials can be used in lapping, polishing, and grinding applications, and how diamond and boron nitride blanks can be mounted to suitable substrates to form ultrahard cutting edges and tools.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003059
EISBN: 978-1-62708-200-6
..., with cations residing in available interstices. An illustration of the cubic and hexagonal close-packed lattices indicating the positions of tetrahedral and octahedral interstices is shown in Fig. 1 . Summary of ceramic crystal structures Table 1 Summary of ceramic crystal structures Class Name...
Abstract
This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal structure, density, mechanical properties, physical properties, electrical properties, thermal properties, and magnetic properties.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006292
EISBN: 978-1-62708-163-4
... letters preceded by a , m , o , t , h , and c to denote, respectively, six crystal systems: triclinic (anorthic), monoclinic, orthorhombic, tetragonal, hexagonal, and cubic. The 14 space (Bravais) lattices and their Hermann-Mauguin and Pearson symbols Table 2 The 14 space (Bravais) lattices...
Abstract
This article defines crystallographic terms and concepts, including crystal structure, unit cell, structure symbols, lattice, space-group notation, and atom position. It schematically illustrates the atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals. A table that lists the crystal structures of various metal elements is presented. The crystal structures are described by the Pearson symbols for crystal system, space lattice, total number of atoms per unit cell, and prototype structure. The article tabulates the assorted structure types of metallurgical interest arranged according to Pearson symbol. It also provides information on crystal defects, explaining some significant ones, such as point defects, line defects, stacking faults, and twins.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003722
EISBN: 978-1-62708-177-1
..., each with a specified equality or inequality to others of axial lengths and interaxial angles. These are the basis of the following crystal systems—triclinic (anorthic), monoclinic, orthorhombic, tetragonal, hexagonal, rhombohedral (trigonal), and cubic—employed in the classification of crystals...
Abstract
This article describes crystallographic terms and concepts and illustrates various crystal structures. The crystallographic terms described include crystal structure, unit cell, crystal system, lattice, structure symbols, space-group notation, structure prototype, atom positions, point groups, and equivalent positions. The article presents a table of assorted structure types of metallurgical interest arranged according to the Pearson symbol. It also schematically illustrates atom positions, prototypes, structure symbols, space-group notations, and lattice parameters for some of the simple metallic crystals. The article concludes with a description of some of the most significant crystal defects such as point defects, line defects, and stacking faults.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0005701
EISBN: 978-1-62708-188-7
... spniy deposition FMS flexible manufacturing system AC adaptive control CVD chemical vapor deposition ft foot ACC adaptive control with constraints CVN Charpy V-notch (impact test or GAC - geometric adaptive control ACI Alloy Casting Institute gal. gallon ACO adaptive control with optimization specimen...
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.9781627081887
EISBN: 978-1-62708-188-7
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006375
EISBN: 978-1-62708-192-4
... fresh surfaces are produced continuously by a counterfacing material. It also applies in vacuum tribology to wear-resistant components used in aerospace mechanisms, semiconductor processing equipment, machine tool spindles, and other systems experiencing sliding or rolling contact at low pressures...
Abstract
This article discusses the adhesion behavior of materials in low-pressure and vacuum environments and provides a schematic illustration of an apparatus for measuring adhesion and friction in ultrahigh vacuum. It describes the effects of low-oxygen pressures and vacuum environments on adhesion and friction, as well as the effects of defined exposure to oxygen on friction. The article discusses the wear of various metals in contact with ceramics, and alloying element effects on friction, wear, and transfer of materials. It also describes studies that characterize the contributions of surface contamination and chemical changes to tribology in low-pressure and vacuum environments.
1