Skip Nav Destination
Close Modal
Search Results for
helicopter rotor blade
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 58 Search Results for
helicopter rotor blade
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2001
Fig. 4 EC-120 helicopter rotor application. (a) Rotor blade sleeve. The part is made of forged 2009/SiC/15p discontinuously reinforced aluminum (DRA). The scale below the part is 30 cm long. (b) Rotor assembly showing the DRA blade sleeves. Photos courtesy of DWA Aluminum Composites, Inc.
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003467
EISBN: 978-1-62708-195-5
... deal mainly with structures that exhibit an initial material and/or manufacturing defect or failures that are most prevalent and most easily solved. The components include helicopter rotor blade, composite wing spar, and aircraft rudder. aircraft rudders composite wing spar helicopter rotor...
Abstract
This article describes the results of several case history studies of the failure of polymer-matrix composite components to provide not only some representative types of failures that can encounter, but also to provide some insight into the investigative process. These case histories deal mainly with structures that exhibit an initial material and/or manufacturing defect or failures that are most prevalent and most easily solved. The components include helicopter rotor blade, composite wing spar, and aircraft rudder.
Image
Published: 01 January 2002
Fig. 6 Fatigue cracking of a helicopter tail rotor blade. (a) Scanning electron micrograph of the blade showing lead wool ballast in contact with the 2014-T652 aluminum spar bore cavity wall at the failure origin ∼13×. (b) Greater magnification (∼63×) in this same area shows the multiple pits
More
Image
Published: 15 January 2021
Fig. 6 Fatigue cracking of a helicopter tail rotor blade. (a) Scanning electron micrograph of the blade showing lead wool ballast in contact with the 2014-T652 aluminum spar bore cavity wall at the failure origin. Original magnification: ~13×. (b) Greater magnification (~63×) in this same area
More
Image
Published: 01 June 2024
Fig. 9 Fatigue failure of a Sikorsky S-61N helicopter pressurized rotor blade spar. (a) Details of the fatigue fracture surface indicating the phases of the spar fatigue life and the locations (arrows) of fractographs for striation spacing measurements. (b) Scanning electron microscope (SEM
More
Image
Published: 01 December 2004
Fig. 12 Three pieces of honeycomb cut with a diamond wire saw. Note the absence of burrs and breakout. From left: titanium; section from helicopter rotor blade consisting of plastic, paper honeycomb, epoxy, stainless steel screws, and Kevlar; extruded ceramic honeycomb used in automotive
More
Image
Published: 01 August 2018
Fig. 31 (a) Computed tomography (CT) image across a sample helicopter tail rotor blade showing outer fiberglass airfoil and center composite spar. (b) Planar reformation through the composite spar from a series of CT slices. The dark vertical lines are normal cloth layup boundaries, while
More
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006848
EISBN: 978-1-62708-387-4
.... On the other hand, there are situations where the load histories are effectively CA despite the overall VA load history. Examples of service and full-scale fatigue test problems that have proven amenable to QF constant-amplitude FCG analyses are vibratory fatigue in helicopter rotor blades ( Ref 44 , 45...
Abstract
Quantitative fractography (QF) is the examination and characterization of fracture surfaces of failed or broken-open components and specimens. This article provides examples of the application of QF to evaluate real-life fatigue failures and also a comprehensive guideline chart for detecting and measuring fatigue striations and progression markings, with examples.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003485
EISBN: 978-1-62708-195-5
... The Eurocopter France EC120 and N4 helicopters are used for civilian law enforcement and search and rescue in Europe, the United States, and in many other countries. The large centrifugal loads of each rotor blade (the N4 has five blades) are supported by a blade sleeve, which holds the rotor blade to the drive...
Abstract
The primary motivation for the insertion of metal-matrix composites (MMCs) into aeronautical systems is the excellent balance of specific strength and stiffness offered by MMCs. This article provides information on the aerostructural, aeropropulsion, and aeronautical subsystem applications of MMCs. The applications include ventral fin, fuel access door covers, helicopter blade sleeve, fan exit guide vane, nozzle actuator piston rod, nozzle actuator links, T-1 racks, and hydraulic manifold.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
.... Affected Systems and Materials Material degradation by liquid-droplet erosion is a significant problem in just a few kinds of engineering systems: blades in the low-pressure ends of steam turbines where the steam is “wet,” and aircraft, missiles, and helicopter rotors flying at high speeds through...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Book Chapter
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002415
EISBN: 978-1-62708-193-1
... laminate types. The stacking sequence also influences fatigue strength. Fig. 12 Effect of R ratio of an fatigue life Helicopter Rotor Blade Fatigue The helicopter rotor blade is the first large-volume use of a composite material as a primary airframe structure. During its service life...
Abstract
Knowledge of fatigue behavior at the laminate level is essential for understanding the fatigue life of a laminated composite structure. This article describes fatigue failure of composite laminates in terms of layer cracking, delamination, and fiber break and interface debonding. It discusses the fatigue behavior of composite laminates in the form of a relation between applied maximum fatigue stress and fatigue life. The article explains Weibull distribution and parameters estimation for fatigue data analysis and life prediction of composite laminates. It analyzes the fatigue properties and damage tolerance of fiber-metal laminates such as ARALL and GLARE laminates. The article concludes with a discussion on the effects of fatigue on notched and unnotched specimens.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... such as panels in aircraft and appliances to such high-performance applications as helicopter rotor blades and rocket motor cases. The reasons for the widespread usage of glass-fiber composites include competitive price, availability, good handleability, ease of processing, high strength, and other acceptable...
Abstract
This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
... specimen toward and into the bladed rotor. Incursion rates, the speed at which the specimen is moved into the rotor, can be adjusted 1 to 2000 μm/s (0.04 to 79 mils/s). Either real turbine blades or blade dummies, as shown in Fig. 14 , can be tested. While the use of original blades provides the advantage...
Abstract
This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric plasma-sprayed abradable powders. Three classic examples of flame spray abradables are nickel-graphite powders, NiCrAl-bentonite powders, and NiCrFeAl-boron nitride powders. The article provides information on various abradable coating testing procedures, namely, abradable incursion testing; aging, corrosion, thermal cycle and thermal shock testing; hardness testing; and erosion resistance testing.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003631
EISBN: 978-1-62708-182-5
... involve a cavitation mechanism. Two areas are most notable for water drop impingement: steam turbines and helicopter rotor blades. In turbines, condensation of steam produces droplets that are carried into the rotor blades, with consequent surface damage. Raindrop erosion on helicopter blades...
Abstract
Mechanically assisted degradation of metals is defined as any type of degradation that involves a corrosion mechanism and a wear or fatigue mechanism. This article provides a discussion on the mechanisms of five forms of degradation: erosion, fretting corrosion, fretting fatigue, cavitation and water drop impingement, and corrosion fatigue. It describes the factors affecting the severity of fretting corrosion. The article also illustrates the relationship between corrosion fatigue and stress-corrosion cracking.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001080
EISBN: 978-1-62708-162-7
..., firewalls, fairings, hydraulic tubing, deicing ductings, SPF parts Engines Compressor disks and blades, fan disks and blades, casings, afterburner cowlings, flange rings, spacers, bolts, hydraulic tubing, hot-air ducts, helicopter rotor hubs Satellites, rockets Rocket engine casings, fuel tanks...
Abstract
Titanium has been recognized as an element with good mechanical and physical properties, alloying characteristics, and corrosion resistance. Providing an outline of general characteristics and types of titanium alloys, this article discusses the contemporary technology of titanium along with its market developments. It also discusses the application of titanium and titanium alloys in corrosive environments and in aerospace and automotive industries. The article describes the developments in titanium processing and materials technologies, which include the development of sponge production and melting processes, oxide dispersion-strengthened alloys by powder metallurgy techniques, titanium-base intermetallic compounds, and titanium-matrix composites.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004039
EISBN: 978-1-62708-185-6
... Flat Webs The conventional steel forging shown in Fig. 7(a) was used in the manufacture of main rotor yokes for helicopters. The yoke was designed to provide clevis forks at each end for attachment of the rotor blades. In service, the centrifugal force of the rotating blades imposed tensile...
Abstract
The distinction between an unconfined web and a confined web describes the relative ease of flow of metal to flash during forging. This article describes the various types of unconfined and confined web-and-rib combinations encountered in the design of forgings. It informs that the limits suggested by forging producers and users covering minimum web thicknesses that are producible are helpful in estimating the producibility of a given web thickness in projected-forging design. The article briefly analyzes the web designs of several forgings, including designs for producing flat webs, contoured webs, and oblique webs. It provides a checklist to be reviewed by a web designer.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003459
EISBN: 978-1-62708-195-5
... than the original. To match the original stiffness, the repaired part would be weaker and slightly heavier than the original, and so on. Therefore, repair design involves evaluating trade-offs among these parameters, especially with stiffness-critical structures, such as helicopter rotor blades...
Abstract
This article begins with an overview of the various types of damage that take place in advanced composite components. These include holes and punctures, delaminations, disbonds, core and resin damage, and water intrusion. The article describes various damage detection techniques, such as visual inspection, tap testing, and ultrasonic inspection, in field conditions. Designing for repair involves various considerations including structure types and repair types. The types of repairs together with other issues surrounding advanced composite repair technology are discussed. The article also provides a discussion on the design considerations, instructions, and materials for repair. It explains various paint-removal methods for composites. The article concludes with a discussion on curing equipment such as portable repair systems, vacuum bags, and ovens and autoclaves.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006378
EISBN: 978-1-62708-192-4
... done in this subject has been in connection with just two major problems: moisture erosion of low-pressure steam turbine blades operating with wet steam, and rain erosion of aircraft or missile surfaces and helicopter rotors. However, the rain erosion of wind turbine blades has increasingly become...
Abstract
Liquid impingement erosion has been defined as progressive loss of original material from a solid surface due to continued exposure to impacts by liquid drops or jets. This article focuses on the core nature of erosion by liquid impingement, due to the greater appreciation of the distinctions between the different forms of erosion. It discusses steam turbine blade erosion, aircraft rain erosion, and rain erosion of wind turbine blades. The article describes the mechanisms of liquid impact erosion and time dependence of erosion rate. It reviews critical empirical observations regarding both impingement variables (velocity, impact angle, droplet size, and physical properties of liquids) and erosion resistance of materials, including the correlation between erosion resistance and mechanical properties and the effects of alloying elements and microstructure. The article also provides information on the ways to combat erosion.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003350
EISBN: 978-1-62708-195-5
... U.S. tactical fighter aircraft, the F-22. Over 24% of the F-22 structure is OMCs. The B-2 bomber, shown in Fig. 2 , is constructed using an even higher percentage of composites, as are current helicopter and vertical lift designs. For example, the tilt- rotor V-22 Osprey is over 41% composite...
Abstract
This article begins with a brief history of composite materials and discusses its characteristics. It presents an introduction to the constituents, product forms, and fabrication processes of composite materials. The article concludes with a discussion on the applications of organic-matrix, metal-matrix, and ceramic-matrix composites.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006543
EISBN: 978-1-62708-290-7
..., ~100 μm, is spread over the surface, typically using a recoating blade or counter-rotating cylinder. The laser beam spot is moved over the surface with the assistance of scanning galvanometer mirrors, melting the powder and causing adherence of the melt pool to the previously deposited layer...
Abstract
Powder bed fusion (PBF) of polymers is a collection of additive manufacturing processes that melt and fuse polymer in a powder bed. This article provides a complete suite of materials and processes involved in PBF of polymers. The discussion includes details of thermal and manufacturing issues, and safety, postprocessing, and finishing considerations, as well as of principal defects in PBF polymer parts and the mechanical properties of the parts produced by PBF. The article provides case studies on the applications of polymer PBF.
1