Skip Nav Destination
Close Modal
By
S.S. Glickstein, E. Friedman, R.P. Martukanitz
By
S.S. Glickstein, E. Friedman
By
Gang Wang, Yiming Rong, Richard D. Sisson, Jr.
By
John Goldak, Mahyar Asadi, Lennart Karlsson
By
E.R. Denlinger, P. Michaleris
By
John Goldak, Moashi Gu, Lennart Karlsson
By
S. Chandrasekar, T.N. Farris, R.R. Hebbar, S.A. Hucker, V.H. Bulsara
By
Ronald A. Wallis
By
Ole Runar Myhr, Øystein Grong
By
B. Lynn Ferguson, Zhichao Li
By
C. Schwenk
By
P.A. Kobryn
By
P.S. De, N. Kumar, J.Q. Su, R.S. Mishra
By
William E. Dowling, Jr., Nagendra Palle
Search Results for
heat-source model
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1376
Search Results for heat-source model
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Schematic of the moving heat source model used in the temperature calculati...
Available to PurchasePublished: 01 January 1994
Book Chapter
Characterization and Modeling of the Heat Source
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding. arc welding direct heat source electric arc welding electron beam welding fusion welding gas metal arc welding gas tungsten arc welding heat-source...
Abstract
Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding.
Book Chapter
Characterization and Modeling of the Heat Source
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001481
EISBN: 978-1-62708-173-3
... Abstract This article briefly reviews the physical phenomena that influence the input-energy distribution. It discusses the several simplified and detailed heat source models used in the modeling of arc welding, high-energy-density welding, and resistance welding processes. arc welding...
Abstract
This article briefly reviews the physical phenomena that influence the input-energy distribution. It discusses the several simplified and detailed heat source models used in the modeling of arc welding, high-energy-density welding, and resistance welding processes.
Image
Published: 31 October 2011
Book Chapter
Heating and Heat-Flow Simulation
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005529
EISBN: 978-1-62708-197-9
... Abstract This article provides information on the heat-source model, conduction heat-transfer model of parts and fixtures, and the radiation heat-transfer and convection heat-transfer models in a furnace. It describes the two types of furnaces used for heat treating: batch furnaces...
Abstract
This article provides information on the heat-source model, conduction heat-transfer model of parts and fixtures, and the radiation heat-transfer and convection heat-transfer models in a furnace. It describes the two types of furnaces used for heat treating: batch furnaces and continuous furnaces. The heating methods, such as direct-fired heating, radiant-tube heating, and electrical heating, are also discussed. Furnace temperature control is essential to ensure quality heat treatment. The article explains the operating procedure of the automatic temperature controllers used in most furnace operations. Heating simulations can be validated by comparison with measured results in full-scale furnaces. The article also presents several case studies to illustrate the use of the simulations.
Book Chapter
Numerical Aspects of Modeling Welds
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005587
EISBN: 978-1-62708-174-0
... to grade the mesh or to adaptively refine and coarsen a finite-element mesh for analyzing welds ( Ref 5 ). Fig. 6 Temperature isotherms near the weld pool in Barlow's weld. Note that contour “I” has two pools: one under the arc and one in the region behind the arc. This heat source was modeled...
Abstract
This article is a comprehensive collection of formulas and numerical solutions, addressing many heat-transfer scenarios encountered in welds. It provides detailed explanations and dimensioned drawings in order to discuss the geometry of weld models, transfer of energy and heat in welds, microstructure evaluation, thermal stress analysis, and fluid flow in the weld pool.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005592
EISBN: 978-1-62708-174-0
... simple point-and-line heat-source models as well as combinations of them ( Ref 51 , Ref 52 , 53 ). These simple heat-input models, in conjunction with the assumption of steady-state conditions and temperature-independent material properties, led to analytical solutions of the temperature field...
Abstract
Fusion welding induces residual stresses and distortion, which may result in loss of dimensional control, costly rework, and production delays. In thermal analysis, conductive heat transfer is considered through the use of thermal transport, heat-input, and material models that provide values for the applied welding heat input. This article describes how the solid-phase transformations that occur during the thermal cycle produced by welding lead to irreversible plastic deformation known as transformation plasticity. Residual stress and welding distortion are also discussed.
Book Chapter
Modeling Thermomechanical Effects on Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006575
EISBN: 978-1-62708-290-7
... modeling, such as heat-input models, material models, and material activation models. Information on experimental setup for validation and simulation of directed-energy deposition model is then included. The article also provides information on moving-source and part-scale analyses to simulate the laser...
Abstract
This article provides a detailed overview of the thermomechanical modeling of additive manufacturing (AM) process. It begins with information on a basic understanding of the formation of residual stress during AM processing followed by a discussion on models commonly applied in AM modeling, such as heat-input models, material models, and material activation models. Information on experimental setup for validation and simulation of directed-energy deposition model is then included. The article also provides information on moving-source and part-scale analyses to simulate the laser powder-bed fusion AM process.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005526
EISBN: 978-1-62708-197-9
... heat transfer occurs in the weld nugget and TMAZ, where the material transportation and deformation change the location of some workpiece material. The analysis work in this class assumes the workpiece material does not experience any displacement while introducing heat source models to simulate...
Abstract
This article discusses the fundamentals of friction stir welding (FSW) and presents governing equations and an analytical solution for heat transfer. It provides the solutions for structural distortion in FSW. The article describes various techniques that have been adopted to solve the equations and simulate the FSW process. The techniques include modeling without convective heat transfer and modeling with convective heat transfer in a workpiece. The article concludes with information on active research topics in the simulation of FSW.
Book Chapter
Numerical Aspects of Modeling Welds
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001480
EISBN: 978-1-62708-173-3
... or to adaptively refine and coarsen a finite-element mesh for analyzing welds ( Ref 5 ). Fig. 6 Temperature isotherms near the weld pool in Barlow's weld. Note that contour I has two pools: one under the arc and one in the region behind the arc. This heat source was modeled as a prescribed-temperature...
Abstract
This article focuses on the various assumptions involved in the numerical modeling of welds, including the geometry of the welded structure and the weld joint, thermal stress, strain, residual stress, and the microstructure in the heat-affected and fusion zones.
Book Chapter
Thermal Aspects of Surface Finishing Processes
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001239
EISBN: 978-1-62708-170-2
... generation being taken as the product of a frictional force (idealized to act tangentially at the particle-workpiece contact) and the relative sliding velocity between the abrasive and the workpiece, is applied to calculate the temperature field produced. The moving heat source model does not address...
Abstract
Thermal phenomena play a key role in the mechanics of surface finishing processes. This article provides information on the analysis and measurement of temperatures and associated thermal damage generated by finishing processes that are essential to the production of engineered components with controlled surface properties. Emphasis is placed on kinematically simple configurations of finishing processes, such as surface grinding, flat surface polishing, and lapping.
Book Chapter
Modeling of Quenching, Residual-Stress Formation, and Quench Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005530
EISBN: 978-1-62708-197-9
... coefficients. Source: Ref 47 From the foregoing, it becomes apparent that, ideally, the HTCs applied in a model should be obtained from the facility in which the part is going to be heat treated and should include the effects of any fixtures that are used to support the part. However, in most cases...
Abstract
This article provides information on the boundary conditions that must be applied to model the heat-transfer coefficient (HTC) in a component being cooled. It describes the historical perspective of various experiments to determine the HTCs. Computational fluid dynamics codes have also been used to predict the HTCs around a part. The article provides information on the various modeling studies used to predict cooling rates in a component. The prediction of residual stresses by validation and optimization of residual stress models is also discussed. Several techniques, such as models neglecting and incorporating material transformation effects, used to predict residual stresses are reviewed. The article also explains the various aspects of models used to prevent cracking during heating and quenching.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005579
EISBN: 978-1-62708-174-0
... model showed the central surface temperatures to be essentially identical at the d / w maxima for the electron beam and GTA processes. The calculated surface temperatures using the traveling distributed heat-source conduction approximation are much too high because, as indicated previously, most...
Abstract
Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects in gas tungsten arc (GTA) welds. This article describes the surface-tension-driven fluid flow model and its experimental observations. The effects of mass transport on arc plasma and weld pool are discussed. The article reviews the strategies for controlling poor and variable penetration and describes the formation of keyhole and fluid flow in electron beam and laser welds. It also explains the fluid flow in gas metal arc welding and submerged arc welding, presenting its transport equations.
Book Chapter
Factors Influencing Heat Flow in Fusion Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005573
EISBN: 978-1-62708-174-0
... Abstract This article reviews the classical models for the pseudo-steady-state temperature distribution of the thermal field around moving point and line sources. These include thick- and thin-plate models and the medium-thick-plate model. The analytical solutions to the differential heat flow...
Abstract
This article reviews the classical models for the pseudo-steady-state temperature distribution of the thermal field around moving point and line sources. These include thick- and thin-plate models and the medium-thick-plate model. The analytical solutions to the differential heat flow equation under conditions applicable to fusion welding are provided. The article also provides an overview of the factors affecting heat flow in a real welding situation using the analytical modeling approach because this makes it possible to derive relatively simple equations that provide the required background for an understanding of the temperature-time pattern.
Book Chapter
Modeling and Simulation of Stresses and Distortion in Induction Hardened Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005882
EISBN: 978-1-62708-167-2
... for (a) Flux 2D and (b) DANTE 3D models at three different process times show equivalent results. Source: Ref 8 Fig. 10 DANTE predictions for the end of a 9 s dwell period for induction heating the flange and fillet section of an axle shaft. Source: Ref 8 Figures 11 and 12 are history...
Abstract
This article provides a discussion on the analytical modeling and simulation of residual stress states developed in steel parts and the reasons for these varied final stress states. It illustrates how the metallurgical phase transformation of steel alloys can be applied in the simulation of induction hardening processes and the role of these phase transformations in affecting stress and distortion. Emphasis is placed on induction surface hardening, which is the main application of induction heating in steel heat treatment. The article concludes with examples of induction surface-hardened shafts and through-hardened shafts made of plain carbon steel, alloy steel, and limited hardenability steel.
Book Chapter
Modeling of Thermomechanical Phenomena in Fusion Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005604
EISBN: 978-1-62708-174-0
.... Adapted from Ref 20 A simplified phenomenological heat-source model is normally used to represent the heat of the welding process. Because this model is not a process model but an abstract parameterized mathematical model, it must be calibrated in an iterative way so that the resulting...
Abstract
This article focuses on the necessary basics for thermomechanical fusion welding simulations and provides an overview of the specific aspects to be considered for a simulation project. These aspects include the required material properties, experimental data needed for validation of the simulation results, simplifications and assumptions as a prerequisite for modeling, and thermomechanical simulation. The article concludes with information on the sensitivity of the material properties data with respect to the simulation results. It also provides hints on the central challenge of having the right material properties at hand for a specific simulation task.
Book Chapter
Heat-Transfer Interface Effects for Solidification Processes
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005423
EISBN: 978-1-62708-196-2
... Abstract A key aspect of solidification process modeling is the treatment of the interface between the solidifying casting and the mold in which it is contained. This article begins with information on casting-mold interface heat-transfer phenomena. It describes practical considerations...
Abstract
A key aspect of solidification process modeling is the treatment of the interface between the solidifying casting and the mold in which it is contained. This article begins with information on casting-mold interface heat-transfer phenomena. It describes practical considerations and methods for incorporating interface heat-transfer coefficient into models and for quantifying the heat transfer coefficient experimentally. The article concludes with information on the selection of the heat transfer coefficient for a given casting configuration.
Book Chapter
Fundamentals of Friction Stir Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
... as the difference in velocity between tool surface and matrix. With a suitable heat-source model, the FSW temperatures can then be approximated using analytical/numerical methods. Temperature Prediction: Analytical Approach Any weld temperature prediction is based on the basic energy conservation equation...
Abstract
Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental temperature measurements during FSW of various metals. It considers the physical explanation of the heat input during FSW and the possible methods of their estimation. The article presents the experimental results of two analytical models, supplemented by experimental/numerical flow models on material flow during FSW. The types of defects, processing parameters affecting the generation of these defects, and results of theoretical models and simulations to understand the formation and control of defects during FSW are discussed. The article concludes with information on the microstructure and its distribution produced during FSW.
Book Chapter
Design for Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002489
EISBN: 978-1-62708-194-8
... design. Source: Ref 10 All seven of the factors that lead to size and shape changes and the development of residual stresses (listed in the section “Overview of Component Heat Treatment” in this article) can be input into (or output from) the model. The variation in structure and composition...
Abstract
This article presents an overview of the techniques used in the design for heat treatment and discusses the primary criteria for design: minimization of distortion and undesirable residual stresses. It provides theoretical and empirical guidelines to understand the sources of common heat treat defects. A simple example is presented to demonstrate how thermal and phase-transformation-induced strains cause dimensional changes and residual stresses. The article concludes with a discussion on the heat treatment process modeling technology.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005533
EISBN: 978-1-62708-197-9
... difference method finite element method hardening induction heat treatment mutual impedance method normalizing simulation software stress relieving tempering MATHEMATICAL MODELING IS ONE OF THE MAJOR FACTORS in successful design of induction heating systems. Computer modeling provides...
Abstract
This article describes the applications of induction heat treatment of metals, including normalizing, annealing, hardening, and tempering and stress relieving. It discusses the simulation techniques of the electromagnetic and thermal processes that occur during induction heat treating. The article explains the finite-difference method, finite-element method, mutual impedance method, and boundary-element method for the numerical computation of the induction heat treating processes. It also discusses the direct and indirect coupling approaches for coupling the electromagnetic and heat-transfer problems. Modern computer simulation techniques are capable of effectively simulating electromagnetic and thermal phenomena for many processes that involve electromagnetic induction. The article considers the challenges faced by developers of modern simulation software.
1