Skip Nav Destination
Close Modal
By
C. Simsir
By
Michael Reich, Olaf Kessler
By
Rongpei Shi, Yunzhi Wang, Dong Wang
By
Reinhold Schneider, Rafael Mesquita, Wolfgang Schützenhöfer
By
Thomas Lübben
By
John E. Allison, Mei Li, XuMing Su
By
Itsuo Ohnaka
By
David U. Furrer
By
William E. Dowling, Jr., Nagendra Palle
By
Ronald A. Wallis
Search Results for
heat treatment simulation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 876
Search Results for heat treatment simulation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Schematic course of heat treatment simulation. TTT, time-temperature-transf...
Available to Purchase
in Modeling and Simulation of the Heat Treatment of Aluminum Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Image
Simplified schematic course of heat treatment simulation with remaining int...
Available to Purchase
in Modeling and Simulation of the Heat Treatment of Aluminum Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 2 Simplified schematic course of heat treatment simulation with remaining interactions for aluminum alloys. TTT, time-temperature-transformation
More
Image
Example for flow chart heat treatment simulation; FEM, finite element metho...
Available to PurchasePublished: 01 October 2014
Fig. 15 Example for flow chart heat treatment simulation; FEM, finite element method; TTT, time temperature transformation diagram, DSC, differential scanning calorimetry. Source: Ref 4
More
Book Chapter
Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
... Abstract This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations...
Abstract
This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations are also discussed with an emphasis on the underlying philosophy for the selection and design of validation tests. The article also discusses the applications, capabilities, and limitations of heat treatment simulations via selected industrial case studies for a better understanding of the effect of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings.
Book Chapter
Modeling and Simulation of the Heat Treatment of Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006271
EISBN: 978-1-62708-169-6
... Abstract Heat treatment simulation helps to predict heat treatment results such as component microstructures, properties, residual stresses, and distortion, and thereby assists in reducing experimental effort in defining heat treatment parameters. This article discusses the modeling...
Abstract
Heat treatment simulation helps to predict heat treatment results such as component microstructures, properties, residual stresses, and distortion, and thereby assists in reducing experimental effort in defining heat treatment parameters. This article discusses the modeling and simulation of age hardening as being the most important heat treatment to strengthen aluminum alloys. It provides information on the heat treatment simulation model, the yield strength model based on the responsible strengthening mechanisms, and the flow curve model based on mechanical tests. The article also discusses simulation of the quenching process, and provides examples for aluminum quenching simulation.
Book Chapter
Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... with critical experimentation for the optimization of heat treatment schedules and TMPs, reducing the time and cost for the development of new alloys and modification of existing ones ( Ref 35 , 36 , 37 , 38 ). For example, significant advances have been made in modeling and simulation of microstructure...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Book Chapter
Distortion in Tool Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005980
EISBN: 978-1-62708-168-9
... steels. It also discusses the prediction of distortion and residual stresses by heat treatment simulation for optimizing production processes. The advantages and limitations of heat treatment simulation are also described. carbides carbon content distortion hardening heat treatment...
Abstract
Distortion, encompassing all irreversible dimensional changes, is of two main types: size distortion and shape distortion. This article provides an overview of the nature and causes of distortion and discusses the process and material aspects of distortion specific to steels and tool steels. It also discusses the prediction of distortion and residual stresses by heat treatment simulation for optimizing production processes. The advantages and limitations of heat treatment simulation are also described.
Image
Decoupled simulation strategy for simulation of heat treatments: step 1, th...
Available to Purchase
in Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking
> Steel Heat Treating Technologies
Published: 30 September 2014
Fig. 2 Decoupled simulation strategy for simulation of heat treatments: step 1, thermometallurgical analysis; step 2, thermomechanical analysis. TTT, time-temperature-transformation; CCT, continuous cooling transformation; CFD, computational fluid dynamics
More
Image
in Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking
> Steel Heat Treating Technologies
Published: 30 September 2014
Image
Illustration of the computational modules and their interaction in DANTE he...
Available to PurchasePublished: 01 November 2010
Fig. 32 Illustration of the computational modules and their interaction in DANTE heat treatment simulation software
More
Book Chapter
Basics of Distortion and Stress Generation during Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005947
EISBN: 978-1-62708-166-5
... will follow the rule of Ameen. Influence of Plastic Strain on Size and Shape Changes The reason for the existence of the change of sign of dimensional changes has not been given until now. To answer this question, Frerichs evaluated heat treatment simulations in more detail. Figure 18 ( Ref 4 ) shows...
Abstract
Dimensional and shape changes caused by heat treatment have been the subject of scientific and industrial research for a very long time. This article provides an overview of the complexity of distortion and stress generation during heat treatment of steels. It discusses the measurement and evaluation of dimensional and shape changes with examples. The article describes the mechanisms at work during the generation of stresses and distortion during heat treatment. A hypothetical experiment with increasing application to real life is used to develop a systematization of unavoidable size and shape changes. The article also provides information on the carriers of distortion potential that cause measureable size and shape changes.
Book Chapter
Integrated Computational Materials Engineering
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005427
EISBN: 978-1-62708-196-2
... ): Accurate simulation of the thermal history of an aluminum component through casting and heat treatment Prediction of the ructure that evolves during these manufacturing processes at all locations in a casting (i.e., the local microstructure) Prediction of critical local mechanical properties...
Abstract
Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering tool, such as virtual aluminum castings (VAC), developed and implemented for quickly developing durable cast aluminum power train components. It describes the procedures for the model development of the VAC system. These procedures include linking the manufacturing process to microstructure, linking microstructures to mechanical properties, linking material properties to performance prediction, and model validation and integration into the engineering process. The article discusses the benefits of the VAC system in process selection, process optimization, and improving the component design criteria.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005938
EISBN: 978-1-62708-168-9
... treatment simulation mechanical properties quench cracking quenchants steel temper embrittlement tool steel HEAT TREATING is done to not only optimize microstructure formation and residual stress distribution, but also to reduce quench distortion and prevent quench cracking. Many studies...
Abstract
Quench cracking is a brittle fracture phenomenon, and its occurrence depends not only on the stress changes but also on the mechanical characteristics of metals. Simulation of quenching processes has become possible in the analysis of quench cracking. This article commences with a discussion on the studies conducted to determine the origin of quench cracks, and then describes various test procedures for determining the susceptibility of quench cracking. It provides a description of the brittle fracture in terms of fracture mechanics and fracture toughness of quenched metals, and discusses the effects of impurities, hydrogen, and surface roughness on cracking. The article exemplifies simulation works applied to several successful cracking tests on cylindrical and complex-shaped steel parts.
Book Chapter
Practical Issues in Computer Simulation of Casting Processes
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005239
EISBN: 978-1-62708-187-0
... results. It should be noted that venting and mold permeability (including mold coating effects) often affect the mold-filling behavior, especially when isolated pockets of gas cannot quickly diffuse through the mold wall or vents. Solidification and Heat Treatment Simulation Heat is transferred...
Abstract
This article illustrates the simulation procedure of casting process. It describes important elements and points of the simulations. These include the setting of clear simulation objectives, selection of proper simulation code, hints in modeling of shape and phenomena, initial and boundary conditions, physical properties, enmeshing, and evaluation of simulation results. The article also provides some insights into the application of models to real world problem for foundry process engineers.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005940
EISBN: 978-1-62708-166-5
... the distortion mechanisms by using the concept of distortion potential and its carriers (see the article “Basics of Distortion and Stress Generation during Heat Treatment” in this Volume). Modeling and simulation not only are helpful, but in many cases are necessary tools to fully understand the mechanisms...
Abstract
This article presents the three levels of investigations of distortion engineering. On Level 1, the parameters and variables influencing distortion in every manufacturing step must be identified. More than 200 parameters can affect distortion. The design of experiments approach allows for the investigation of larger numbers of parameters by a limited number of samples, and can be structured into system analysis, test strategy, test procedure, and test evaluation. Level 2 focuses on understanding the distortion mechanisms by using the concept of distortion potential and its carriers. Distortion engineering aims to compensate distortion using the so-called compensation potential (Level 3). Level 3 discusses the measures to improve homogeneity, and respectively the symmetry, of the carriers of the distortion potential. The article also discusses the compensation of the resulting size and shape changes of the existing asymmetries by well-directed insertions of additional inhomogeneity/asymmetries in one or more of the distributions of the carriers.
Book Chapter
Temperature Requirements for Heating Super Alloys and Stainless Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005886
EISBN: 978-1-62708-167-2
... processes, preheating for primary and secondary forming processes, heat treatments, brazing, and thermal processing for fusion welds. The article also provides information on computational modeling of induction heating processes for super alloys and stainless steels. brazing cast nickel-based...
Abstract
This article discusses special considerations relative to induction heating of stainless steels and nickel-base superalloys. It focuses on the various industrial and high-temperature applications of induction heating to stainless steel and superalloy components, namely, primary melting processes, preheating for primary and secondary forming processes, heat treatments, brazing, and thermal processing for fusion welds. The article also provides information on computational modeling of induction heating processes for super alloys and stainless steels.
Book Chapter
Design for Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002489
EISBN: 978-1-62708-194-8
... experimental and simulation procedures is shown in Fig. 6 . Typically, each of the five steps of the heat treat process (described in the section “Overview of Component Heat Treatment” in this article) represents a computer analysis. For example, carbon diffusion during a carburizing process requires a mass...
Abstract
This article presents an overview of the techniques used in the design for heat treatment and discusses the primary criteria for design: minimization of distortion and undesirable residual stresses. It provides theoretical and empirical guidelines to understand the sources of common heat treat defects. A simple example is presented to demonstrate how thermal and phase-transformation-induced strains cause dimensional changes and residual stresses. The article concludes with a discussion on the heat treatment process modeling technology.
Book Chapter
Modeling of Quenching, Residual-Stress Formation, and Quench Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005530
EISBN: 978-1-62708-197-9
... is therefore the need to produce a component that meets the customers' specification the first time. Avoiding multiple trials to develop a heat treatment practice that produces the properties needed, avoids quench cracking, and limits the distortion during quenching or machining saves both time and money...
Abstract
This article provides information on the boundary conditions that must be applied to model the heat-transfer coefficient (HTC) in a component being cooled. It describes the historical perspective of various experiments to determine the HTCs. Computational fluid dynamics codes have also been used to predict the HTCs around a part. The article provides information on the various modeling studies used to predict cooling rates in a component. The prediction of residual stresses by validation and optimization of residual stress models is also discussed. Several techniques, such as models neglecting and incorporating material transformation effects, used to predict residual stresses are reviewed. The article also explains the various aspects of models used to prevent cracking during heating and quenching.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005963
EISBN: 978-1-62708-168-9
... Abstract This article provides a detailed discussion on the effect of boron in heat-treated steel and thermomechanically-simulated steel. It describes the boron hardenability mechanism and the effect of composition and heat treatment parameters on boron hardenability. The article examines...
Abstract
This article provides a detailed discussion on the effect of boron in heat-treated steel and thermomechanically-simulated steel. It describes the boron hardenability mechanism and the effect of composition and heat treatment parameters on boron hardenability. The article examines the hardening behavior of unalloyed boron steel and low-alloyed boron steel in heat treatment experiments by varying the austenitizing temperatures and cooling conditions. It also discusses the applications of boron steels.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005813
EISBN: 978-1-62708-165-8
... not only to simulate carbon profiles but to predict microstructures as well as the resulting core hardness after quenching ( Ref 11 ). In special cases, heat treatment distortions are numerically simulated as well ( Ref 12 ). However, due to the extensive effort in setting up the model and defining...
Abstract
Low-pressure carburizing (LPC) is one of the most popular case-hardening processes and is applied to increase the fatigue limit of dynamically loaded components. It takes place in a pressure range between 5 and 15 mbar (4 and 11 torr) and at temperature range between 870 and 1050 deg C. The LPC process runs in two different types of equipment: single-chamber furnaces and treatment chambers. This article reviews the use of simulation software for prediction of carbon profiles and typical quality control procedures. It describes the physical principles and typical applications of LPC.
1