1-20 of 928

Search Results for heat input control

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005664
EISBN: 978-1-62708-174-0
... Abstract This article provides the basic physics of the two most widely used arc welding processes: gas tungsten arc welding and gas metal arc welding. It describes the various control parameters of these processes such as arc length control, voltage control, heat input control, and metal...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005592
EISBN: 978-1-62708-174-0
... Abstract Fusion welding induces residual stresses and distortion, which may result in loss of dimensional control, costly rework, and production delays. In thermal analysis, conductive heat transfer is considered through the use of thermal transport, heat-input, and material models that provide...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005931
EISBN: 978-1-62708-166-5
... Abstract Heat treating furnaces require different control systems and integration for achieving optimum technical results and enabling safe operation. This article focuses on atmosphere furnaces, with some coverage on controls for vacuum furnaces. Heat treating operations require reliable...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005614
EISBN: 978-1-62708-174-0
... inspection joint design joint tracking melt-zone configuration process control surface geometry weld atmosphere weld geometry weld repair welded joints wire feeding equipment ELECTRON BEAM WELDING (EBW) can produce deep, narrow, and almost parallel-sided welds with low total heat input...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005893
EISBN: 978-1-62708-167-2
....). Optimization Problems for Induction Mass Heating Processes This section discusses induction heating as a process under optimal control, mathematical models of a heating process, cost criteria, requirements to final temperature distribution within heated workpieces, control inputs, constraints...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005611
EISBN: 978-1-62708-174-0
... + β titanium alloys can be seen. Through rigorous process control, it has been demonstrated that the size of these columnar grains can be controlled by limiting the heat input during the deposition process ( Ref 5 ). Fig. 4 Microstructures of electron beam free-form fabricated Ti-6Al-4V...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001406
EISBN: 978-1-62708-173-3
... and carbon equivalent, these steels significantly improve their resistance to hydrogen-induced cold cracking. Therefore, the concern with preheat, interpass temperature control, and PWHT during welding fabrication is not critical. However, HAZ softening, especially at high heat inputs, is a concern...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005854
EISBN: 978-1-62708-167-2
... Power supply: Also designed for the heating application and coil design Machine controller: Can be a computer or programmable logic controller (PLC) Interface wiring: Input/output (I/O) from the machine controller to the power supply Operator interface: Operator input device for control...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001432
EISBN: 978-1-62708-173-3
... properties. Welding heat input may have to be controlled so as not to diminish the properties in the heat-affected zone (HAZ) of the base metal, or postweld heat treatment may be necessary to restore the strength and/or toughness of the HAZ. Medium-carbon steel—steel that contains 0.30 to 0.60% C—can...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005559
EISBN: 978-1-62708-174-0
..., and power sources. medium-frequency direct current system power supplies resistance welding single-phase control system HEAT DURING RESISTANCE WELDING is generated by the flow of electrical current through the parts being joined. The main process variables are welding current, welding time...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001404
EISBN: 978-1-62708-173-3
... microstructures, as well as fabrication-weldability problems associated with cold cracking. High heat inputs can introduce coarse microstructures with both low toughness and low strength. The heat input alone does not control the resulting microstructure and HAZ properties, but the induced thermal cycle controls...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005529
EISBN: 978-1-62708-197-9
... Furnace Temperature Calculation From Eq 27 , the main factors affecting the furnace temperature are material properties of loads and heat storage. Loads include parts and all the furnace accessories, and heat storage is related to the furnace heat input, furnace control method, and furnace heat loss...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005591
EISBN: 978-1-62708-174-0
... to the geometric location of the electrode in the slag. With careful control of the process variables (such as gap distance and convective flow suppression) by external application of the electromagnetic field, reductions of two or three times the usual heat input could be practical. Energy balance in the slag...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
... temperature measurements during FSW of various metals. It considers the physical explanation of the heat input during FSW and the possible methods of their estimation. The article presents the experimental results of two analytical models, supplemented by experimental/numerical flow models on material flow...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001337
EISBN: 978-1-62708-173-3
... the sinusoidal waveform of the utility input line ( Fig. 3a ). Fig. 2 Selected alternating current power sources. (a) Alternating current welding transformer, adjustable core or windings. (b) Three-phase SCR-controlled dc welding power source. (c) Inverter block diagram. (d) Motor-generator set. (e...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005621
EISBN: 978-1-62708-174-0
... distortion and residual stresses all follow from the heat and mass inputs. The conventional parameters identified previously are variables that control the heat and mass inputs. An example of the relationship between the conventional parameters of electrode speed and welding speed to heat and mass...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001335
EISBN: 978-1-62708-173-3
... procedures emphasize control of parameters such as electrode speed (or current), voltage, welding speed, contact tube-to-base metal distance, as well as current pulse parameters for out-of-position welding. It is therefore easy to overlook the fact that the process is simply a source of heat and mass inputs...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005925
EISBN: 978-1-62708-166-5
... and temperatures. To handle such changes efficiently, control systems must constantly readjust heat input so that the work temperature is maintained despite changing operating conditions. This includes the adjustment of energy input to compensate for heat losses of the furnace. The systems for temperature...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
...-current tion), an inductor (heating) coil, controls, and Medium-frequency motor-generator units power input, and nature of the workpiece. Four workpiece handling units. When a steel or cast examples of magnetic fields and induced currents iron is being hardened, the system may also in- consist of a high...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002116
EISBN: 978-1-62708-188-7
..., and independent-dependent interactions or relationships. The engineer or machine tool operator has direct control over the input variables and can specify or select them when setting up the machining process. Several input variables are described below. Figure 3 summarizes the input/output relationships...