Skip Nav Destination
Close Modal
Search Results for
heat conduction
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2265 Search Results for
heat conduction
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 October 2011
Image
in Large Probes for Characterization of Industrial Quenching Processes
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Image
Published: 01 January 1990
Image
Published: 01 January 1993
Image
Published: 31 August 2017
Image
Published: 01 February 2024
Image
Published: 01 December 2009
Fig. 16 Typical boundary conditions in viscous heat-conducting fluid flow. Source: Ref 1 with permission
More
Image
in Computational Modeling of Induction Melting and Experimental Verification
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 1 Modes of heat transfer: (a) conduction through solid or stationary fluid, (b) convection from surface to a moving fluid, and (c) net radiation heat exchange between surfaces. Source: Ref 2
More
Image
in Determination of Heat Transfer Coefficients for Thermal Modeling
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 21 Heat-transfer coefficient (HTC) determined by the inverse conduction method for a typical cold oil and the ISO 9950 probe
More
Image
Published: 31 October 2011
Fig. 24 Effect of thermal conductivity (λ) and volumetric heat capacity (ρ c ) on the predicted peak temperature contours (500, 700, and 1000 °C, or 930, 1290, and 1830 °F) in conventional bead-on-plate welding. Left side: temperature-dependent thermal properties; right side: constant thermal
More
Image
in Hardness and Electrical Conductivity Testing of Aluminum Alloys[1]
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 4 Changes in conductivity and strength (or hardness) with heat treatment or aging of hardening alloys
More
Image
Published: 01 June 2016
Fig. 70 Effects of room-temperature aging on electrical conductivity of common heat treatable aluminum alloys that have been solution heat treated and quenched. Product form is aluminum sheet.
More
Image
Published: 30 November 2018
Fig. 22 Changes in conductivity and strength (or hardness) with heat treatment or aging of hardening alloys. Source: Ref 38
More
Image
Published: 01 November 1995
Fig. 5 Increase in conductivity of carbon fibers with fiber modulus (heat treatment temperature). These data have been collected by laboratory heat treatments of fibers and may differ from conductivity measured on commercially produced fibers. PAN, polyacrylonitrile
More
Image
Published: 01 November 1995
Fig. 4 The conductivity of carbon fibers increases with fiber modulus (heat-treatment temperature). These data have been collected by laboratory heat treatments of fibers and may differ from conductivity measured on commercially produced fibers.
More
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006453
EISBN: 978-1-62708-190-0
... Abstract Thermal nondestructive evaluation (TNDE) is an indirect process, so that regardless of the form of energy used to excite the sample, interaction with the internal structure of a part occurs through the process of heat conduction. This article discusses the steady-state configuration...
Abstract
Thermal nondestructive evaluation (TNDE) is an indirect process, so that regardless of the form of energy used to excite the sample, interaction with the internal structure of a part occurs through the process of heat conduction. This article discusses the steady-state configuration and selective excitation configuration of the signal-generation mechanisms in thermal nondestructive evaluation methods. The three widely used approaches to TNDE are surface-excited thermography, vibrothermography, and thermoelastic stress analysis. The article provides information on the common features, characteristics, and limitations of these approaches.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005835
EISBN: 978-1-62708-167-2
... Abstract Induction heating is a combination of several interrelated physical phenomena, including heat transfer, electromagnetics, and metallurgy. This article presents a brief review of different heat transfer modes, namely, heat conduction, thermal radiation, and convection. It focuses...
Abstract
Induction heating is a combination of several interrelated physical phenomena, including heat transfer, electromagnetics, and metallurgy. This article presents a brief review of different heat transfer modes, namely, heat conduction, thermal radiation, and convection. It focuses on the specifics of induction heating and heat treating applications. The article discusses the nonlinear and interrelated nature of a particular heat transfer phenomenon, physical property, and skin effect. It also presents simple case studies and general physical laws governing different heat transfer modes. The article also discusses the basic concepts of direct current and alternating current circuits, and reviews the theory of electromagnetic fields.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0006997
EISBN: 978-1-62708-450-5
... on an inverse heat conduction analysis. The article contains a compilation of best practice examples on heat transfer evaluation, which are intended to represent the practical aspects and applicability of the methods aiming the prediction of heat-transfer coefficients. cooling heat transfer analysis...
Abstract
This article presents the modes of heat transfer and the stages of cooling during quenching. It provides an overview on the wetting process and then focuses on the evaluation of heat transfer during quenching. It also presents the challenges of thermal process evaluation based on an inverse heat conduction analysis. The article contains a compilation of best practice examples on heat transfer evaluation, which are intended to represent the practical aspects and applicability of the methods aiming the prediction of heat-transfer coefficients.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005789
EISBN: 978-1-62708-165-8
... on the design of the probe, heat-extraction dynamics, and influence of wetting kinematics. It also includes discussions on the simplified 1-D temperature-distribution model, calculation of the HTC, and the finite-volume method for the heat-conduction equation. finite-volume method hardness heat-transfer...
Abstract
This article provides a discussion on probes for laboratory tests and resultant curves of industrial quenching processes. It describes the scope of the tests, and the calculation of heat-transfer coefficient (HTC) based on the tests. The article highlights the differences between the laboratory tests and characterization of industrial quenching processes. It reviews the importance of initial heat-flux density and first critical heat-flux density. The theoretical principle behind and the purpose of the temperature gradient method are discussed. The article provides information on the design of the probe, heat-extraction dynamics, and influence of wetting kinematics. It also includes discussions on the simplified 1-D temperature-distribution model, calculation of the HTC, and the finite-volume method for the heat-conduction equation.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006464
EISBN: 978-1-62708-190-0
... surface. This article discusses the strategies for implementing thermography for NDE, including the steady-state/whole-body approach and transient heat conduction. It describes the most common signal-processing methods, such as thermographic signal reconstruction, lock-in thermography, and pulsed-phase...
Abstract
For most nondestructive evaluation (NDE) applications, the term thermography actually refers to surface-excited thermography (SET) that involves thermal mapping of surface temperature as heat flows from, to, or through a test object in response to excitation applied to the sample surface. This article discusses the strategies for implementing thermography for NDE, including the steady-state/whole-body approach and transient heat conduction. It describes the most common signal-processing methods, such as thermographic signal reconstruction, lock-in thermography, and pulsed-phase thermography. The article concludes with a discussion on the use of thermal methods for thermal diffusivity measurement and characterization of multilayer structures.
1