Skip Nav Destination
Close Modal
By
G.E. Totten, M. Narazaki, R.R. Blackwood, L.M. Jarvis
By
George F. Vander Voort, Gabriel M. Lucas, Elena P. Manilova
By
B. Hernández-Morales
By
Eckhard H. Burgdorf, Manfred Behnke, Rainer Braun, Kevin M. Duffy
By
Mohammed Maniruzzaman, Xiaolan Wang, Richard D. Sisson, Jr.
By
Li Wang, John G. Speer
By
R.W. Swindeman, W. Ren
By
Rodney R. Boyer, John Foltz
By
Geoffrey K. Sigworth
By
Michael Reich, Olaf Kessler
By
Chongchen Xiang, Nikhil Gupta
By
Rongpei Shi, Yunzhi Wang, Dong Wang
Search Results for
heat
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 9991
Search Results for heat
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Heat Treating of Stainless Steels and Heat-Resistant Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003203
EISBN: 978-1-62708-199-3
... Abstract Heat treating of stainless steel produces changes in physical condition, mechanical properties, and residual stress level and restores maximum corrosion resistance when that property has been adversely affected by previous fabrication or heating. This article focuses on annealing...
Abstract
Heat treating of stainless steel produces changes in physical condition, mechanical properties, and residual stress level and restores maximum corrosion resistance when that property has been adversely affected by previous fabrication or heating. This article focuses on annealing of different types of stainless steels such as austenitic, ferritic, duplex, martensitic, and precipitation-hardening, and on the heat treatment of superalloys and refractory metals. It discusses the recommended procedures for solution annealing, austenite conditioning, transformation cooling, and age tempering of precipitation-hardening stainless steels. The article also lists general recommendations for the annealing temperatures of tantalum, niobium, molybdenum, tungsten, and their alloys.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... Abstract This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Book Chapter
Failures Related to Heat Treating Operations
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Book Chapter
Metallography and Microstructures of Heat-Resistant Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003737
EISBN: 978-1-62708-177-1
... Abstract This article discusses the specimen preparation of three types of cast and wrought heat-resistant alloys: iron-base, nickel-base, and cobalt-base. Specimen preparation involves sectioning, mounting, grinding, polishing, and etching. The article illustrates the microstructural...
Abstract
This article discusses the specimen preparation of three types of cast and wrought heat-resistant alloys: iron-base, nickel-base, and cobalt-base. Specimen preparation involves sectioning, mounting, grinding, polishing, and etching. The article illustrates the microstructural constituents of cast and wrought heat-resistant alloys. It describes the identification of ferrite by magnetic etching. The transmission electron microscopy examination of the fine strengthening phases in wrought alloys and bulk extraction in heat-resistant alloys are included. The article also reviews the gamma prime phase, gamma double prime phase, eta phase, laves phase, sigma phase, mu phase, and chi phase in wrought heat-resistant alloys.
Book Chapter
Characterization of Heat Transfer during Quenching
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005814
EISBN: 978-1-62708-165-8
... Abstract This article describes the mechanisms and characteristics of heat transfer in the quenching of steel. This article describes the characterization of boiling heat transfer, including pool boiling, forced convective boiling, and rewetting, which plays a key role in defining the heat...
Abstract
This article describes the mechanisms and characteristics of heat transfer in the quenching of steel. This article describes the characterization of boiling heat transfer, including pool boiling, forced convective boiling, and rewetting, which plays a key role in defining the heat-extraction characteristics of a liquid quenchant. It provides information on heat generated microstructural field evolution and information on the analysis and characterization of heat transfer boundary conditions.
Book Chapter
Stop-Off Technologies for Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005784
EISBN: 978-1-62708-165-8
... Abstract A wide variety of stop-off technologies for heat treatment are used to selectively prevent the diffusion of carbon and/or nitrogen during atmosphere carburizing, carbonitriding, vacuum carburizing, and various forms of nitriding. In addition to selective stop-off, technologies are also...
Abstract
A wide variety of stop-off technologies for heat treatment are used to selectively prevent the diffusion of carbon and/or nitrogen during atmosphere carburizing, carbonitriding, vacuum carburizing, and various forms of nitriding. In addition to selective stop-off, technologies are also available for scale prevention in open-fired furnaces. This article describes two stop-off technologies, mechanical masking and copper plating, along with stop-off paints/compounds. Prior to the application of stop-off paints, the part surface of the furnaces should be properly cleaned and dried. The article also describes the usage of stop-off paints in different heat treating processes, namely, carburizing and carbonitriding, deep carburizing, vacuum carburizing, nitriding and nitrocarburizing, and plasma nitriding. The article concludes by reviewing the application methods of stop-off paints: brushing, dipping, dispensing, spraying and stamping.
Book Chapter
Cleaning of Steel for Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005777
EISBN: 978-1-62708-165-8
... Abstract This article provides an overview of surface contaminants that may affect the heat treatment processes and end-product quality. It presents information on the chemicals used to clean different surface contaminants of steels. The article discusses three types of cleaning methods, namely...
Abstract
This article provides an overview of surface contaminants that may affect the heat treatment processes and end-product quality. It presents information on the chemicals used to clean different surface contaminants of steels. The article discusses three types of cleaning methods, namely, mechanical, chemical, and electrochemical and their effectiveness and applicability. The mechanical cleaning methods include grinding, brushing, steam or flame jet cleaning, abrasive blasting, and tumbling. Solvent cleaning, emulsion cleaning, alkaline cleaning, acid cleaning, pickling, and descaling are chemical cleaning methods. The electrochemical cleaning methods include electropolishing, electrolytic alkaline cleaning, and electrolytic pickling. The article provides information on cleanliness measurement methods such as qualitative tests and quantitative tests to ensure product quality. Health hazards that may be associated with each cleaning method and the general control measures to be used for each hazard are tabulated.
Book Chapter
Introduction to Steel Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005819
EISBN: 978-1-62708-165-8
... Abstract The heat treatment of steel is based on the physical metallurgical principles that relate to its processing, properties, and structure. The microstructures that result from the heat treatment of steel are composed of one or more phases in which the atoms of iron, carbon, and other...
Abstract
The heat treatment of steel is based on the physical metallurgical principles that relate to its processing, properties, and structure. The microstructures that result from the heat treatment of steel are composed of one or more phases in which the atoms of iron, carbon, and other elements in steel are associated. This article describes the phases of heat treated steel, and provides information on effect of temperature change and the size of carbon atoms relative to that of iron atoms during the heat treatment.
Book Chapter
Quenching and Partitioning Steel Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005800
EISBN: 978-1-62708-165-8
... Abstract Quenching and partitioning (Q&P) steel is a term used to describe a series of C-Si-Mn, C-Si-Mn-Al, or other steels subjected to the quenching and partitioning heat treatment process. This article discusses the Q&P steel's chemical compositions and mechanical properties...
Abstract
Quenching and partitioning (Q&P) steel is a term used to describe a series of C-Si-Mn, C-Si-Mn-Al, or other steels subjected to the quenching and partitioning heat treatment process. This article discusses the Q&P steel's chemical compositions and mechanical properties, and provides an overview of the important background and product characteristics with a focus on the automotive sheet steel application. It schematically represents the continuous annealing process, consequent phase-transformation behaviors, and forming-limit curves of Q&P steels. The article describes the parameters associated with resistance spot welding, laser welding, and metal active gas welding. It also provides useful information of retained austenite volume fraction measured by x-ray diffraction and electron backscatter diffraction. The article also examines microstructure evolution during tensile testing at different strain levels using electron backscatter diffraction.
Book Chapter
Stress-Relief Heat Treating of Steel
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005782
EISBN: 978-1-62708-165-8
... Abstract Stress-relief heat treating of steel is the uniform heating of a structure to a suitable temperature below the transformation range, holding at this temperature for a predetermined period of time, followed by uniform cooling. This article provides information on the sources of residual...
Abstract
Stress-relief heat treating of steel is the uniform heating of a structure to a suitable temperature below the transformation range, holding at this temperature for a predetermined period of time, followed by uniform cooling. This article provides information on the sources of residual stress, briefly describes the factors influencing the relief of residual stresses, and discusses the various thermal stress-relief methods. It contains tables that provide a summary of compressive and tensile residual stresses at the surface of parts fabricated by common manufacturing processes. The article presents the temperature range of alloy steels for stress-relief heat treating and describes the importance of stress relief of springs.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003993
EISBN: 978-1-62708-185-6
... superalloys, namely, iron-nickel superalloys, nickel-base alloys, cobalt-base alloys, and powder alloys. The article discusses the microstructural mechanisms during hot deformation and presents processing maps for various superalloys. It concludes with a discussion on heat treatment of wrought heat-resistant...
Abstract
This article provides a discussion on forging methods, melting procedures, forging equipment, forging practices, grain refinement, and critical factors considered in forging process. It describes the different types of solid-solution-strengthened and precipitation-strengthened superalloys, namely, iron-nickel superalloys, nickel-base alloys, cobalt-base alloys, and powder alloys. The article discusses the microstructural mechanisms during hot deformation and presents processing maps for various superalloys. It concludes with a discussion on heat treatment of wrought heat-resistant alloy forgings.
Book Chapter
Fatigue and Fracture Resistance of Heat-Resistant (Cr-Mo) Ferritic Steels
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002402
EISBN: 978-1-62708-193-1
... Abstract Cr-Mo steels are preferred in the construction of high-temperature components because they possess excellent strength, toughness, and corrosion resistance relative to carbon steels and most low-alloy steels. This article discusses the composition and metallurgy of the heat-resistant Cr...
Abstract
Cr-Mo steels are preferred in the construction of high-temperature components because they possess excellent strength, toughness, and corrosion resistance relative to carbon steels and most low-alloy steels. This article discusses the composition and metallurgy of the heat-resistant Cr-Mo steels. It details the Charpy V-notch (CVN) toughness properties of Cr-Mo steels relevant to fatigue and fracture resistance. The fracture mechanics of Cr-Mo steels are reviewed. The article analyzes the characterization of low-cycle fatigue based on fatigue damage calculations. It concludes with information on fatigue crack growth and fatigue behavior of weldments.
Book Chapter
Machining of Heat-Resistant Alloys
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002183
EISBN: 978-1-62708-188-7
... Abstract This article provides a discussion on cutting tools, their materials and design; cutting fluids; and various aspects of machining operations of heat-resistant alloys, with several examples. Operations such as turning, planing and shaping, broaching, drilling, reaming, counterboring...
Abstract
This article provides a discussion on cutting tools, their materials and design; cutting fluids; and various aspects of machining operations of heat-resistant alloys, with several examples. Operations such as turning, planing and shaping, broaching, drilling, reaming, counterboring and spotfacing, tapping and thread milling, milling, sawing, and grinding are discussed. Nominal compositions of wrought heat-resistant alloys and nickel-base heat-resistant casting alloys, as well as compositions of cobalt-base heat-resistant casting, iron-base heat-resistant casting, and mechanically alloyed (oxide dispersion strengthened) products are also listed.
Book
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.9781627081689
EISBN: 978-1-62708-168-9
Book Chapter
Metallurgy of Titanium Alloy Heat Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006263
EISBN: 978-1-62708-169-6
... Abstract This article provides a detailed discussion on the heat treatment processes for titanium and titanium alloys. These processes are age hardening, solution treatment, aging, and annealing. The article illustrates the characteristics of equilibrium phase diagrams that are important...
Abstract
This article provides a detailed discussion on the heat treatment processes for titanium and titanium alloys. These processes are age hardening, solution treatment, aging, and annealing. The article illustrates the characteristics of equilibrium phase diagrams that are important for understanding the heat treatment of titanium alloys. It explains the types of metastable phases encountered in titanium alloys. The article also provides information on the equilibrium phase relationships and properties of titanium alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006256
EISBN: 978-1-62708-169-6
... Abstract Heat treatment of depleted uranium (DU) alloys with 4.0 wt% or more molybdenum or equivalent is similar to that of dilute alloys. This article discusses the metallurgical characteristics and processing considerations of DU and its alloys, and describes the control of grain size...
Abstract
Heat treatment of depleted uranium (DU) alloys with 4.0 wt% or more molybdenum or equivalent is similar to that of dilute alloys. This article discusses the metallurgical characteristics and processing considerations of DU and its alloys, and describes the control of grain size and orientation using beta treatment. It lists the typical mechanical properties of DU as functions of the amount of cold work and hardness data of uranium rod, and describes the annealing of cold-worked DU. The article also describes the heat treatment of dilute alloys of DU, focusing on the three basic furnace designs used for heating or heat treating of unalloyed uranium: molten salt baths, inert-atmosphere furnaces, and vacuum furnaces. Finally, it presents procedures that are examples of heat treatment used to meet certain specifications of ultimate tensile strength, yield strength, and elongation.
Book Chapter
Heat Treatment of Aluminum Alloy Castings
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006264
EISBN: 978-1-62708-169-6
... considered here are: Al-Cu and Al-Cu-Mg (2xx) alloys, Al-Zn-Mg (7xx) alloys, Al-Si-Mg alloys, Al-Si-Cu, and Al-Si-Cu-Mg alloys. aluminum alloys artificial aging castings chemical composition heat treatment natural aging quenching solution heat treatment THE STRENGTH OF ALUMINUM CASTINGS can...
Abstract
This article presents a detailed discussion on typical thermal treatment practices for hardening of various aluminum casting alloys. These practices are solution treatment, quenching or cooling, preaging, and artificial aging at an elevated temperature. The aluminum casting alloys considered here are: Al-Cu and Al-Cu-Mg (2xx) alloys, Al-Zn-Mg (7xx) alloys, Al-Si-Mg alloys, Al-Si-Cu, and Al-Si-Cu-Mg alloys.
Book Chapter
Modeling and Simulation of the Heat Treatment of Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006271
EISBN: 978-1-62708-169-6
... Abstract Heat treatment simulation helps to predict heat treatment results such as component microstructures, properties, residual stresses, and distortion, and thereby assists in reducing experimental effort in defining heat treatment parameters. This article discusses the modeling...
Abstract
Heat treatment simulation helps to predict heat treatment results such as component microstructures, properties, residual stresses, and distortion, and thereby assists in reducing experimental effort in defining heat treatment parameters. This article discusses the modeling and simulation of age hardening as being the most important heat treatment to strengthen aluminum alloys. It provides information on the heat treatment simulation model, the yield strength model based on the responsible strengthening mechanisms, and the flow curve model based on mechanical tests. The article also discusses simulation of the quenching process, and provides examples for aluminum quenching simulation.
Book Chapter
Heat Treating of Magnesium Alloy Metal-Matrix Composites
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006258
EISBN: 978-1-62708-169-6
... and composites. It discusses the microstructures used for the most common magnesium alloys used in metal-matrix composites, namely, magnesium-aluminum, magnesium-rare earth and magnesium-lithium alloys. The article focuses on the most common methods of heat treatment, including solution heat treatment...
Abstract
Magnesium-matrix composites (MgMCs) are very promising as structural materials because of their low density, high specific strength, and excellent castability. This article provides information on the characteristics, mechanical properties, and applications of magnesium alloys and composites. It discusses the microstructures used for the most common magnesium alloys used in metal-matrix composites, namely, magnesium-aluminum, magnesium-rare earth and magnesium-lithium alloys. The article focuses on the most common methods of heat treatment, including solution heat treatment, precipitation strengthening or aging, and annealing, applied to these alloys. Finally, it describes the microstructural aspects and precipitate-matrix relationships of MgMCs as well as the heat treatment methods for MgMCs.
Book Chapter
Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
..., and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
1