Skip Nav Destination
Close Modal
Search Results for
hardenability limit
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1697 Search Results for
hardenability limit
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1990
Fig. 2 End-quench hardenability limits for the hardenability grades of cast steel specified in SAE J435c. The nominal carbon content of these steels is 0.30% C (see Table 1 ). Manganese and other alloying elements are added as required to produce castings that meet these limits.
More
Image
Published: 01 October 2014
Fig. 27 End-quench hardenability limits for the hardenability grades of cast steel specified in SAE J435c. The nominal carbon content of these steels is 0.30% C. Manganese and other alloying elements are added as required to produce castings that meet these limits.
More
Image
Published: 01 December 1998
Fig. 1 End-quench hardenability limits for the hardenability grades of cast steel specified in SAE J435c. The nominal carbon content of these steels is 0.30% C (see Table 1 ). Manganese and other alloying elements are added as required to produce castings that meet these limits.
More
Image
Published: 01 October 2014
Image
in H Steels and Steel Selection for Hardenability[1]
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Image
Published: 01 October 2014
Fig. 21 Hardenability limits of 1038H compared with various alloy H-steels with comparable carbon content: (a) minimum limit, (b) maximum limit
More
Image
Published: 01 October 2014
Fig. 22 Hardenability limits of 1045H compared with various alloy H-steels with comparable carbon content: (a) minimum limit, (b) maximum limit
More
Image
Published: 01 October 2014
Fig. 3 Hardenability limits of various low-alloy H-steels with nominal 0.40% C content. (a) Minimum hardness limits plotted (top) and tabulated (bottom). (b) Maximum hardness limits plotted (top) and tabulated (bottom)
More
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0009237
EISBN: 978-1-62708-161-0
... on hardenability. It explains the significance of H-steels, and how they are guaranteed to meet established hardenability limits for specific temperatures and chemical compositions. The article compares hardenability curves for six series of steel and includes several charts showing composition and H-band limits...
Abstract
Hardenability is an expression of the propensity of steel to harden when quenched at the austenitizing temperature. It is defined in terms of the depth and distribution of alloying elements present in the steel. This article describes the selection process for steel with an emphasis on hardenability. It explains the significance of H-steels, and how they are guaranteed to meet established hardenability limits for specific temperatures and chemical compositions. The article compares hardenability curves for six series of steel and includes several charts showing composition and H-band limits for various alloy grades.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001030
EISBN: 978-1-62708-161-0
... Abstract This article presents hardenability curves for more than 80 types of carbon and alloy hardenability band (H-band) steels. Each H-band hardenability limit curve is presented graphically and in tabular form, in both metric and English units. The caption for each curve includes...
Abstract
This article presents hardenability curves for more than 80 types of carbon and alloy hardenability band (H-band) steels. Each H-band hardenability limit curve is presented graphically and in tabular form, in both metric and English units. The caption for each curve includes the normalizing and austenitizing heat-treating temperatures recommended by SAE for these steels. The article includes a brief description of how hardenability curves are used for specification purposes.
Image
in Fatigue Resistance of Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 16 Effect of carbon content and hardness on fatigue limit of through-hardened and tempered 4140, 4053, and 4063 steels. See the sections “Composition” and “Scatter of Data” in this article for additional discussions.
More
Image
Published: 01 August 2013
Fig. 10 Limits of carbide precipitation for different case-hardening steels (calculated according to Ref 9 )
More
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005954
EISBN: 978-1-62708-168-9
...-alloy nickel-chromium-molybdenum steels low-alloy nickel-molybdenum steels low-alloy silicon-manganese steels LOW-ALLOY STEELS usually are used to achieve better hardenability due to the limited hardenability of carbon steel. All alloying elements (except cobalt) increase the hardenability...
Abstract
This article summarizes some of the effects of the major alloying elements in low-alloy steels and the heat treating for some common types of low-alloy steels. Coverage includes common alloys of the following low-alloy steel types: low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, low-alloy chromium-vanadium steels, and low-alloy silicon-manganese steels. The article reviews heat treating parameters and processing considerations for each category of steel, including spherodizing, normalizing, annealing, hardening, and tempering.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003103
EISBN: 978-1-62708-199-3
... specimens under the fastest cooling rates of water quenching are nearly always higher than those developed under production heat treating conditions, because hardenability limitations in quenching larger sizes may result in less than 100% martensite formation. Effects of carbon and martensite content...
Abstract
Hardenability is usually the single most important factor in the selection of steel for heat-treated parts. The hardenability of steel is best assessed by studying the hardening response of the steel to cooling in a standardized configuration in which a variety of cooling rates can be easily and consistently reproduced from one test to another. These include the Jominy end-quench test, the carburized hardenability test, and the surface-area-center hardenability test. This article discusses the effects of varying carbon content as well as the influence of different alloying elements on hardenability of steels. The basic information needed before a steel with adequate hardenability can be specified as the as-quenched hardness required prior to tempering to final hardness that will produce the best stress-resisting microstructure; the depth below the surface to which this hardness must extend; and the quenching medium that should be used in hardening.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005998
EISBN: 978-1-62708-168-9
... plots of relative hardenability of carbon steels. alloy steel carbon content cooling rate hardenability hardenability limit hardness quenching Introduction HARDENABILITY IS A TERM used to designate that property of steel which determines the depth and distribution of hardness induced...
Abstract
This article is a comprehensive collection of graphs that present information on the hardenability bands of various grades of alloy steels. It also includes figures showing correlations of Jominy equivalent cooling rates, plots of end-quench bands of carbon steels, and logarithmic plots of relative hardenability of carbon steels.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001029
EISBN: 978-1-62708-161-0
... guide. alloying carbon steels H-steels hardenability hardenability limits hardenability selection charts hardenability testing low-alloy steels quenching of steel HARDENABILITY OF STEEL is the property that determines the depth and distribution of hardness induced by quenching. Steels...
Abstract
Hardenability of steel is the property that determines the depth and distribution of hardness induced by quenching. Hardenability is usually the single most important factor in the selection of steel for heat-treated parts. The hardenability of a steel is best assessed by studying the hardening response of the steel to cooling in a standardized configuration in which a variety of cooling rates can be easily and consistently reproduced from one test to another. These include the Jominy end-quench test, the carburized hardenability test, and the air hardenability test. Tests that are more suited to very low hardenability steels include the hot-brine test and the surface-area-center test. The article discusses the effects of varying carbon content as well as the influence of different alloying elements. It includes charts and a table that serve as a general steel hardenability selection guide.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005949
EISBN: 978-1-62708-168-9
... properties of steel ( Fig. 1 ). Carbon content increases the hardness (strength) for all types of microstructures, with martensitic microstructures having the greatest hardness. Martensite can be produced in low-carbon steels, but there are practical limits because hardenability (depth of martensite...
Abstract
This article discusses the classification of carbon steels based on carbon content, and tabulates the compositional limits of medium- and high-carbon steels based on the AISI code and other similar codes. It describes recrystallization annealing and spheroidizing of carbon steels, and discusses the classification of carbon steels for heat treatment. The article also discusses the estimation of continuous cooling curves from isothermal transformation curves. It provides information on the Jominy end-quench test and the Grossmann method and the procedures to increase hardenabilty of carbon steels. The article includes information on the purpose of tempering and heat treating guidelines for different grades of steels, including cast carbon steels.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003122
EISBN: 978-1-62708-199-3
... no special control over thermal conditions or strain hardening is employed. For wrought products, there are no mechanical property limits. O, Annealed O applies to wrought products that are annealed to obtain lowest-strength temper and to cast products that are annealed to improve ductility...
Abstract
This article describes the systems for designating the aluminum and aluminum alloys that incorporate the product forms (wrought, casting or foundry ingots) and its respective temper for strain-hardened alloys, heat-treatable alloys and annealed alloys. All these systems are covered by American National Standards Institute (ANSI) standard H35.1. Furthermore, the article provides a short note on the designation of unregistered tempers.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005801
EISBN: 978-1-62708-165-8
... that are used for the calculation of case hardenability of carburizing steels and the hardenability of high-carbon steels hardened after a prior normalize or quench treatment. The article reviews the derivation and limitations of multiplying factors. hardenability high-carbon steel quenching...
Abstract
Hardenability of steel depends on carbon content and other alloying elements as well as on the grain size of the austenite phase. This article provides information on the calculation of high-carbon (carburized) steel hardenability. It contains tables that list multiplying factors that are used for the calculation of case hardenability of carburizing steels and the hardenability of high-carbon steels hardened after a prior normalize or quench treatment. The article reviews the derivation and limitations of multiplying factors.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005882
EISBN: 978-1-62708-167-2
...-hardened shafts and through-hardened shafts made of plain carbon steel, alloy steel, and limited hardenability steel. austenite cracking distortion induction hardening microstructure numerical modeling steel stress through hardening Induction hardening involves austenitizing a steel part...
Abstract
This article provides a discussion on the analytical modeling and simulation of residual stress states developed in steel parts and the reasons for these varied final stress states. It illustrates how the metallurgical phase transformation of steel alloys can be applied in the simulation of induction hardening processes and the role of these phase transformations in affecting stress and distortion. Emphasis is placed on induction surface hardening, which is the main application of induction heating in steel heat treatment. The article concludes with examples of induction surface-hardened shafts and through-hardened shafts made of plain carbon steel, alloy steel, and limited hardenability steel.
1