Skip Nav Destination
Close Modal
By
Nathan S. Jacobson, Dennis S. Fox, James L. Smialek, Elizabeth J. Opila, Christopher Dellacorte ...
Search Results for
hard ceramics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 299 Search Results for
hard ceramics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and...
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
.... The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
... Abstract Sintering provides the interparticle bonding that generates the attractive forces needed to hold together the otherwise loose ceramic powder mass. It also improves hardness, strength, transparency, toughness, electrical conductivity, thermal expansion, magnetic saturation, corrosion...
Abstract
Sintering provides the interparticle bonding that generates the attractive forces needed to hold together the otherwise loose ceramic powder mass. It also improves hardness, strength, transparency, toughness, electrical conductivity, thermal expansion, magnetic saturation, corrosion resistance, and other properties. This article discusses the fundamentals of sintering and its effects on pore structures and particle density. It addresses some of the more common sintering methods, including solid-state, liquid-phase, and gas pressure sintering, and presents alternative processes such as reaction sintering and self-propagating, high-temperature synthesis. It also describes several pressure densification methods, including hot isostatic pressing, gas pressure sintering, molten particle deposition, and sol-gel processing. The article concludes with a section on grain growth that discusses the underlying mechanisms and kinetics and the relationship between grain growth and densification.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003059
EISBN: 978-1-62708-200-6
... Abstract This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal...
Abstract
This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal structure, density, mechanical properties, physical properties, electrical properties, thermal properties, and magnetic properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
... after firing; they are also sometimes glazed and/or metallized. Advanced ceramics are rarely glazed, but they often require extensive shaping when they are fully hard and dense, since most are produced by processes (such as hot pressing) that combine forming and firing to give these ceramics maximum...
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001316
EISBN: 978-1-62708-170-2
... edges or any holes present during firing. The second group of properties are those associated with the use of the product, such as appearance, smoothness, porosity, and corrosion resistance to various liquids and gases. Almost all vitreous coatings are expected to be homogeneous, smooth, and hard and...
Abstract
This article focuses on the ceramic coatings for ceramic and glass substrates. It describes the role of oxides in glazes and discusses the optical and appearance properties of various types of glazes, such as leadless glazes, lead-containing glazes, opaque glazes, and satin and matte glazes. The article provides information on the classification of pigments and the applications of ceramic coatings for decorations on ceramic and glass surfaces.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
... totally appropriate to the characterization activities associated with ceramics and glasses. For example, the techniques used to polish hard metals prior to microstructural analysis can often lead to artifacts when applied to ceramics, which, in turn, can lead to misinterpretation of key features. Careful...
Abstract
The characterization, testing, and nondestructive evaluation of ceramics and glasses are vital to manufacturing control, property improvement, failure prevention, and quality assurance. This article provides a broad overview of characterization methods and their relationship to property control, both in the production and use of ceramics and glasses. Important aspects covered include the means for characterizing ceramics and glasses, the corresponding rationale behind them, and relationship of chemistry, phases, and microconstituents to engineering properties. The article also describes the effects that the structure of raw ceramic materials and green products and processing parameters have on the ultimate structure and properties of the processed piece. The effects that trace chemistry and processing parameters have on glass properties are discussed. The article describes mechanical tests and failure analysis techniques used for ceramics.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003049
EISBN: 978-1-62708-200-6
... is defined as a continuous adherent layer of glass on the surface of a ceramic body that is hard, nonabsorbent, and easily cleaned. A glaze is usually applied as a suspension of glaze-forming ingredients in water. After the glaze layer dries on the surface of the piece, it is fired, whereupon the...
Abstract
This article provides an overview of the types, properties, and applications of traditional and advanced ceramics and glasses. Principal product areas for traditional ceramics include whitewares, glazes, porcelain enamels, structural clay products, cements, and refractories. Advanced ceramics include electronic ceramics, optical ceramics, magnetic ceramics, and structural ceramics.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003004
EISBN: 978-1-62708-200-6
... Melting point Maximum service temperature Thermal conductivity, W/m · K Coefficient of linear thermal expansion, from 25 to 800 °C (77 to 1470 °F), 10 −6 /°C Specific heat (mean) at 25 to 1000 °C (77 to 1830 °F), J/kg · °C Hardness, Mohs scale °C °F °C °F At 100 °C (212 °F) At 1000 °C (1830...
Abstract
This article is a comprehensive collection of engineering property data in tabulated form for ceramics and glasses. Data are provided for physical and mechanical properties of ceramic materials and color of ceramics fired under oxidizing and reducing conditions. The article also lists the materials characterization techniques for ceramics and glasses.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003053
EISBN: 978-1-62708-200-6
..., soft, binder, low density; B, hard binder, low density; C, soft binder, high density. TD, theoretical density; P, pressure Much more information is obtained from a compaction rate diagram, which is derived from the compaction response diagram by taking the first derivative of the curve. This...
Abstract
Ceramic-forming processes usually start with a powder which is then compacted into a porous shape, achieving maximum particle packing density with a high degree of uniformity. This article compares and contrasts several forming processes, including mechanical consolidation, dry pressing, cold isostatic pressing, slip casting, tape casting, roll compaction, extrusion, and injection molding. It describes the advantages, equipment and tooling, and material requirements of green machining, the machining of ceramics in an unfired state with the intent of producing parts as close to as possible to their final shape. The article also provides useful information on drying methods, shrinkage, and defects as well as the removal of organic processing aids such as dispersants, binders, plasticizers, and lubricants.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
.... When in contact with body fluids and host tissue, bioactive glasses develop a reactive layer at their surfaces, which provides a compliant interface between the bioactive glass and both soft and hard host tissue. A disadvantage of the bioactive glasses is their low mechanical strength and low fracture...
Abstract
Ceramics are used widely in a number of different clinical applications in the human body. This article provides a brief history of the bioceramics field and information on the classification of the different types of bioceramics. These include bioinert ceramics, bioactive ceramics, and bioresorbable ceramics. The article describes the third-generation bioceramics, classified by Hench and Polak, such as silicate-substituted hydroxyapatite and bone morphogenic protein-carrying calcium phosphate coatings. It reviews several examination methods that are used to test the biocompatibility of ceramics, namely, biosafety testing, biofunctionality testing, bioactivity testing, and bioresorbability testing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003051
EISBN: 978-1-62708-200-6
... ceramic whiteware compositions, % Component Fine whiteware Earthenware, wall tile Vitreous floor tile Chemical stoneware Tender porcelain Hard porcelain Electrical porcelain Steatite porcelain Bone china Hotel china Cookware Vitreous china, sanitaryware A B C D E F China clay...
Abstract
Traditional ceramics, one of two general classes, are commonly used in high-volume manufacturing to make building materials, household products, and various industrial goods. Although there is a tendency to equate traditional ceramics with low technology, sophisticated processes and advanced manufacturing techniques are often used where these materials are employed. This article examines several traditional ceramics, including structural clay, whiteware, glazes, enamels, portland cements, and concrete. It also provides a detailed account of fabrication methods, properties, and applications. As an example, common applications for structural clay include facing materials, load-bearing units, pavers, and ceramic tiles.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003058
EISBN: 978-1-62708-200-6
.... Surfaces of brittle materials are particularly susceptible to contact damage caused by hard objects, during either indentation or impact. Similar damage is produced when sharp particles strike glass or ceramic surfaces. Lateral cracks reach the surface, causing material to spall off. The size of the origin...
Abstract
Failure analysis is a process of acquiring specified information regarding the appropriateness of the design of a part, the competence with which the various steps of its manufacture have been performed, any abuse suffered by it in packing and transportation, or the severity of service under which failure has occurred. Beginning with a discussion of the various stages of failure analysis of glass and ceramic materials, this article focuses on descriptive and quantitative fracture surface analysis techniques that are used in the examination of glass and surfaces created by fracture and the interpretation of the fracture markings seen on these surfaces. Details are provided for the procedures for locating fracture origins, determining direction of crack propagation, learning the sequence of crack propagation, deducing the stress state at the time of fracture, and observing interactions between crack fronts and inclusions, etc. A separate fractography terminology is provided in this article.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
... object damage (FOD) has proven to be a critical failure mode for ceramic blade materials. The inherent brittleness and low fracture toughness of ceramic materials can cause FOD to become a catastrophic failure mode for monolithic ceramic components. Sources of FOD are hard carbon particles from the...
Abstract
The design process for ceramic materials is more complex than that of metals because of low-strain tolerance, low fracture toughness and brittleness. The application of structural ceramics to engineering systems hinges on the functional benefits to be derived and is manifested in the conceptual design for acceptable reliability. This article discusses the design considerations for the use of structural ceramics for engineering applications. It describes the conceptual design and deals with fast fracture reliability, lifetime reliability, joints, attachments, interfaces, and thermal shock in detailed design procedure. The article provides information on the proof testing of ceramics, and presents a short note on public domain software that helps determine the reliability of a loaded ceramic component. The article concludes with several design scenarios for gas turbine components, turbine wheels, ceramic valves, and sliding parts.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
... ferrites is also active. Categories of ferrite include hard, soft, and microwave materials. All are based primarily on Fe 2 O 3 . Recent developments with ceramic superconductors have targeted a number of important potential applications for these materials. Projected areas of major impact include thin...
Abstract
Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power and electronics industry, namely, dielectric, piezoelectric, ferroelectric, sensing, magnetic and superconducting devices.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003842
EISBN: 978-1-62708-183-2
... hypothesized that advanced ceramics may exhibit favorable high-temperature friction and wear properties because of their high hot hardness and achievable low surface roughness characteristics. This concept was loosely based on the premise that friction and wear, for self-mated steel for instance, was due to...
Abstract
This article examines the high-temperature oxidation of silica-forming ceramics under constant temperature and cyclic conditions. The effects of water vapor, impurities, and molten salts are discussed. The article describes the oxidation and corrosion of silica-forming composites, oxide ceramics, non-silica forming nitrides, carbides, and borides. The performance of environmental barrier coatings by material type is also discussed. The article also explains the effects of oxidation and corrosion on the mechanical properties of ceramic-matrix composites. It concludes with information on high-temperature applications, wear properties, and the microscopic analyses of advanced ceramics.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003056
EISBN: 978-1-62708-200-6
... Abstract Many applications of ceramics and glasses require them to be joined to each other or to other materials such as metals. This article focuses on ceramic joining technologies, including glass-metal sealing, glass-ceramic/metal joining, ceramic-metal joining, ceramic-ceramic joining, and...
Abstract
Many applications of ceramics and glasses require them to be joined to each other or to other materials such as metals. This article focuses on ceramic joining technologies, including glass-metal sealing, glass-ceramic/metal joining, ceramic-metal joining, ceramic-ceramic joining, and the more advanced joining of nonoxide ceramics. It also discusses metallizing, brazing, diffusion bonding, and chemical bonding.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003050
EISBN: 978-1-62708-200-6
... to recycling green scrap, attempts are being made to recycle fired scrap—normally disposed of in landfills—back into the process. Because this scrap is dense and hard, it can be difficult to crush into the desired size, especially in the case of large parts such as electrical porcelain insulators...
Abstract
Ceramic and glass manufacturers take environmental regulations into consideration during all stages of the product cycle, from research and development to purchasing, processing, end use, and disposal. Ceramic and glass products are finding application in the construction industry and as raw materials for other processes. This article describes the recycling of in-process scrap and industrial wastes (fly ash, red mud, metallurgical waste, and other waste products), and applications of these recycled products. It focuses on environmental regulations such as Resource Conservation and Recovery Act and Clean Air Act. The Clean Air Act requires all states to meet minimum emissions standards for nitrogen-oxygen compounds, volatile organic compounds, and carbon monoxide.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... in physical properties, and relates properties and hard-tissue response to particular clinical applications. The article provides information on glass or glass-ceramic particles for cancer treatments. bioactive glasses biocompatibility calcium phosphate ceramics cancer treatments ceramics...
Abstract
This article focuses on ceramics, glasses, glass-ceramics, and their derivatives, that is, inorganic-organic hybrids, in the forms of solid or porous bodies, oxide layers/coatings, and particles with sizes ranging from nanometers to micrometers, or even millimetres. These include inert crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences in physical properties, and relates properties and hard-tissue response to particular clinical applications. The article provides information on glass or glass-ceramic particles for cancer treatments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001280
EISBN: 978-1-62708-170-2
... Molybdenum alloys 1040–1150 1900–2100 4–16 Tantalum alloys 1040–1150 1900–2100 4–12 Tungsten alloys 1040–1370 1900–2500 3–16 (a) Tolerances: ±6 °C (±10 °F) at 1040 °C (1900 °F);±14 °C (±25 °F) at 1260 °C (2300 °F). (b) Tolerance, ±10 min Table 12 Hardness of three ceramic...
Abstract
Ceramic coatings are applied to metals to protect them against oxidation and corrosion at room temperature and at elevated temperatures. This article provides a detailed account of the factors to be considered when selecting a ceramic coating and describes the characteristics of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor streaming, troweling, and electrophoresis. The article also includes information on the evaluation of the quality of ceramic coatings.