Skip Nav Destination
Close Modal
Search Results for
hard anodic process
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 613 Search Results for
hard anodic process
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001281
EISBN: 978-1-62708-170-2
..., and hard anodic process. It describes the limitations imposed by variables, such as alloy composition, surface finish, prior processing, temper or heat treatment, and the use of inserts, on the anodizing processes. The article explains the causes and means adopted for correcting several specific problems...
Abstract
Anodizing refers to conversion coating of the surface of aluminum and its alloys to porous aluminum oxide. This article provides the reasons for performing anodizing and discusses the three principal types of anodizing processes, namely, chromic acid process, sulfuric acid process, and hard anodic process. It describes the limitations imposed by variables, such as alloy composition, surface finish, prior processing, temper or heat treatment, and the use of inserts, on the anodizing processes. The article explains the causes and means adopted for correcting several specific problems in anodizing aluminum. It also discusses the process control techniques and equipment used for anodizing. The article reviews the sealing processes for anodic coatings and the method for coloring the coatings. It concludes with a discussion on the effects of anodic coatings on the surface and mechanical properties of aluminum and its alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
... by hard anodizing processes, most anodic coatings range in thickness from 5 to 18 μm (0.2 to 0.7 mils). The succession of operations typically employed in anodizing is illustrated in Fig. 1 . Fig. 1 Typical process sequence for anodizing operations Surface Preparation A chemically...
Abstract
This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys. It describes various techniques to improve functional surface properties and enhance the appearance of product forms. The article discusses various cleaning and finishing techniques such as abrasive blast cleaning, polishing and buffing, barrel burnishing, chemical cleaning, pickling, etching and bright dipping, electrochemical cleaning, mechanical cleaning, and mass finishing. It also examines coating processes such as plating, anodizing, chemical conversion coating, and thermal spray, and concludes with a discussion on oxidation-resistant coatings for refractory metals.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001261
EISBN: 978-1-62708-170-2
... with hexavalent tank chrome. The exceptions are the harder deposits of cobalt and gold ( Table 2 ). Table 3 provides a point-by-point comparison of selective plating with competitive processes, including tank plating. Deposit hardness attainable with selective plating versus bath plating Table 2 Deposit...
Abstract
Selective plating, also known as brush plating, differs from traditional tank or bath plating in that the workpiece is not immersed in a plating solution (electrolyte). Instead, the electrolyte is brought to the part and applied by a handheld anode or stylus, which incorporates an absorbent wrapping for applying the solution to the workpiece (cathode). This article focuses on the selective plating systems that include a power pack, plating tools, anode covers, specially formulated plating solutions, and any auxiliary equipment required for the particular application. It provides a detailed account of the applications of selective plating, with examples. The article describes the advantages, limitations, key process elements, and health and safety considerations of selective plating. It also includes the most important industrial, government, and military specifications.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003680
EISBN: 978-1-62708-182-5
.... It discusses each step involved in the anodizing process of an aluminum or aluminum alloy specimen. The anodizing process includes pretreatments (degreasing, etching, and polishing), anodizing, coloring, and sealing. The article provides an observation of the morphology of the anodic oxide films...
Abstract
Anodizing is one of the most common surface treatments of aluminum and is performed for corrosion protection. This article describes the structure and growth characteristics of the types of anodic oxide films such as a barrier-type oxide film and a porous-type anodic oxide film. It discusses each step involved in the anodizing process of an aluminum or aluminum alloy specimen. The anodizing process includes pretreatments (degreasing, etching, and polishing), anodizing, coloring, and sealing. The article provides an observation of the morphology of the anodic oxide films by transmission electron microscopy and the scanning electron microscopy for testing properties of anodic oxide films.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001243
EISBN: 978-1-62708-170-2
..., of chromium) / (4 × 0.116) Plating speed, mils/h = (thickness of deposit, in mils × 60) / plating time, min Process Control In addition to solution composition, the principal variables that must be controlled for satisfactory hard chromium plating are the anodes, the current density...
Abstract
Hard chromium plating is produced by electrodeposition from a solution containing chromic acid and a catalytic anion in proper proportion. This article presents the major uses of hard chromium plating, and focuses on the selection factors, plating solutions, solution and process control, equipment, surface preparation, and crack patterns and other characteristics of hard chromium plating. It offers recommendations for the design and use of plating racks, describes the problems encountered in hard chromium plating, and their corrective procedures. The article provides information on the removal of chromium plate from coated metals, recovery and disposal of wastes, and stopoff media for selective plating.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006491
EISBN: 978-1-62708-207-5
... Source: Ref 2 taken from Ref 3 Fig. 1 Hard coated aluminum ring gear with severe pitting at defects and scratch at bottom center. Not sealing the hard coat improves the wear resistance, but significantly compromises the corrosion resistance Source: Ref 4 Deposition Processes...
Abstract
Aluminum components are often plated with other metals to mitigate the effects of corrosion and wear, improve application performance, and extend service life. This article discusses some of the more common aluminum plating processes, including electroplating, immersion plating, and electroless plating, and describes various plating materials and the types of applications in which they are used. It provides critical processing details such as temperatures, ratios, ranges, times, and rates. The article explains how to prepare aluminum components for electroplating, discussing surface roughening, anodizing, and immersion procedures along with expected results.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006551
EISBN: 978-1-62708-210-5
... nozzles, insulation plates, blast shields, and so on. It is not recommended where rubbing speeds are high or bearings are highly loaded. This process also is used to restore undersized or worn out surfaces of machine components ( Ref 55 ). The hard anodizing processes produce thicker coatings, from 25...
Abstract
Aluminum alloys are widely used in engineered components because of their excellent strength-to-weight ratio. Their use in applications requiring wear resistance is more limited. One of the main limitations of aluminum alloys is the poor tribological behavior mainly due to their relatively low hardness, which favors large plastic deformation under sliding conditions. This article discusses the classes and mechanisms of wear in aluminum-silicon alloys, aluminum-tin bearing alloys, and aluminum-matrix composites; describes the effect of material-related parameters on wear behavior of these alloys; and reviews their applications in a variety of tribological applications in the automotive industry ranging from aluminum-tin alloys for plain bearings to alloys with hard anodizing for machine elements. Methods to improve wear resistance and alloy hardness are also discussed.
Image
Published: 30 November 2018
Fig. 15 Rack of hard anodized components exiting a rinse tank after the anodizing process. Supplementary spraying is underway to facilitate rinsing. Courtesy of Impreglon Surface Engineering, Kaufbeuren, Germany
More
Image
Published: 30 November 2018
Fig. 12 (a) Schematic of the structure of the anodic aluminum oxide (AAO) (b) TEM image of AAO processed under hard anodizing conditions (low temperature, high current density). The anodic oxide is a self-assembled network of individual columnar cells that have rounded bottoms. Each column
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001245
EISBN: 978-1-62708-170-2
... Abstract This article discusses the process considerations and deposit properties of nickel plating. It describes the Watts solution and the anode materials used. The article focuses on the nickel plating processes used for decorative, engineering, and electroforming purposes. It provides...
Abstract
This article discusses the process considerations and deposit properties of nickel plating. It describes the Watts solution and the anode materials used. The article focuses on the nickel plating processes used for decorative, engineering, and electroforming purposes. It provides information on the quality control of nickel plating. It concludes with a review of the environmental, health, and safety considerations associated with nickel plating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... pH … … 0.8–1.7 <0.6 Anodes Copper (a) Copper (a) Copper (b) Copper (b) (a) Phosphorized copper (0.02 to 0.08% P) is recommended. (b) High-purity, oxygen-free, nonphosphorized copper is recommended. Industrial (Hard) Chromium Plating HARD CHROMIUM PLATING...
Abstract
Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also discusses selective plating, electroforming, and other processes and where they are typically used.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
...-chromium deposition using a 100 g load ( Ref 12 ). It should be noted that average microhardness is highly dependent on the operating parameters of the plating process, with as-deposited chromium deposits ranging from 300 to 1000 Knoops ( Ref 13 , 14 ). Heat treatment can also improve the hardness...
Abstract
This article discusses the fundamentals of electroplating processes, including pre-electroplating and surface-preparation processes. It illustrates the four layers of a plating system, namely, top or finish coat, undercoat, strike or flash, and base material layers. The article describes various plating methods, such as pulse electroplating, electroless plating, brush plating, and jet plating. It reviews the types of electrodeposited coatings, including hard coatings and soft coatings. The article also details the materials available for electroplating, including electroplated chromium, electroplated nickel, electroless (autocatalytic) nickel, electroless nickel composite coatings, electroplated gold, and platinum group coatings. These are specifically tailored toward plated coatings for friction, lubrication, and wear technology. The article concludes with a discussion on the common issues encountered with electroplating.
Image
Published: 30 November 2018
Fig. 19 Transmission electron microscopy image of a nickel acetate sealed type III (hard) anodized oxide. The black layer is a layer of sputter-deposited gold, placed to maintain the surface during sample preparation. The arrows indicate representative residual fragments of intact anodic
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006512
EISBN: 978-1-62708-207-5
... by the electrolytic coloring process for the most part ( Ref 1 ). The first work on colored anodic films was done in Japan using oxalic acid, which produces very hard films with yellow to light bronze colors, but because these coatings required very thick films to develop colors, they were not very popular...
Abstract
This article describes the methods used for coloring anodized aluminum coatings: integral coloring, electrolytic coloring, chemical coloring, and organic dyeing. It discusses organic dye chemistry in terms of single-component organic dyes and multicomponent dyes. The article reviews optimal dyeing conditions, such as temperature, time, concentration, and pH. It concludes with a discussion on the factors considered for choosing a coloring method: the desired shade, light fastness, heat fastness, and contamination.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001291
EISBN: 978-1-62708-170-2
... can readily be controlled. Similarly, the monocharged nature of the anodic-arc-generated ions simplifies stream focusing and control. This facilitates usage in materials processing and as a plasma source in space research. Rate of Deposition The rate of deposition, using arc technology...
Abstract
This article describes the characteristics of continuous cathodic arc sources and filtering process for removing macroparticles from a cathodic arc. It provides information on the types of arc sources and the properties of deposited materials. The advantages, limitations, and applications of arc deposition are also discussed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001254
EISBN: 978-1-62708-170-2
... of these PGMs along with the types of anodes used in the process. anodes electrolytes electroplating iridium plating osmium plating palladium plating platinum plating platinum-group metal anodes rhodium plating ruthenium plating THE SIX PLATINUM-GROUP METALS (PGMs), listed in order...
Abstract
The electroplating of platinum-group metals (PGMs) from aqueous electrolytes for engineering applications is limited principally to palladium and, to a lesser extent, to platinum, rhodium, and thin layers of ruthenium. This article provides a discussion on the plating operations of these PGMs along with the types of anodes used in the process.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001308
EISBN: 978-1-62708-170-2
..., the buff is ready for operation. At this stage a lubricant, such as a buffing compound or tallow, may be used to produce a higher reflection. Table 9 describes the equipment and techniques employed in mechanical satin finishing processes. If the satin-finished parts are to be anodized, etching...
Abstract
Aluminum or aluminum alloy products have various types of finishes applied to their surfaces to enhance appearance or improve functional properties. This article discusses the procedures, considerations, and applications of various methods employed in the cleaning, finishing, and coating of aluminum. These include abrasive blast cleaning, barrel finishing, polishing, buffing, satin finishing, chemical cleaning, chemical brightening, electrolytic brightening, chemical etching, alkaline etching, acid etching, chemical conversion coating, electroplating, immersion plating, electroless plating, porcelain enameling, and shot peening.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006523
EISBN: 978-1-62708-207-5
... grown under type III or hard anodizing conditions (0 to 5 °C, or 32 to 40 °F, and a current density of 2.0 A/dm 2 < i a < 3.5 A/dm 2 ), which is a process that typically employs more highly alloyed substrates such as wrought aluminum superalloys and castings with alloy loading exceeding 12...
Abstract
Anodizing produces a uniform, continuous, highly ordered network of individual cells comprising a layer whose thickness and cell dimensions, and ultimately engineering properties, depend on the electrochemical parameters of the anodizing process. This article discusses the nucleation and growth of anodic aluminum oxide and the important characteristics of the finished porous anodic aluminum oxide. In industry, anodic oxides and the anodizing processes have been categorized into types that exhibit specific properties to suit specific applications. The article reviews the two most basic types of oxides, namely, barrier-layer anodic oxides and porous anodic oxides. It concludes with a description of postanodizing processes, such as dyeing and sealing.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003833
EISBN: 978-1-62708-183-2
... Abstract This article discusses the corrosion of chromium electrodeposits and the ways for optimizing corrosion resistance. It describes the processing steps and conditions for hard chromium plating. These steps include pretreatment, electroplating, and posttreatment. The article also provides...
Abstract
This article discusses the corrosion of chromium electrodeposits and the ways for optimizing corrosion resistance. It describes the processing steps and conditions for hard chromium plating. These steps include pretreatment, electroplating, and posttreatment. The article also provides information on duplex coatings and the applications of chromium electrodeposits.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006522
EISBN: 978-1-62708-207-5
..., which are manifested in processes such as cleaning, brightening, etching, conversion coatings, electroplating, and anodizing. Point defects such as vacancies and dislocations agglomerate and accumulate at grain boundaries, which change the interfacial energy and confound the electrochemical reaction...
Abstract
This article discusses the properties of aluminum surface and the applications of aluminum alloys. It explains the effects of trace elements on aluminum alloys. The article considers microstructural development of aluminum in terms of the surface and explains how it will impact corrosion resistance and surface treatment. It describes the thermodynamics of equilibrium oxidation processes and non-equilibrium corrosion processes. The article provides a discussion on aluminum oxidation under atmospheric and dynamic conditions. It presents the potential/pH (Pourbaix) diagram for aluminum under atmospheric and dynamic conditions. The article also explains the polarization effects during the formation of stable aluminum oxide under dynamic conditions. It concludes with information on the designation system for aluminum finishes.
1