Skip Nav Destination
Close Modal
Search Results for
hand-forged billets
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 226 Search Results for
hand-forged billets
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006616
EISBN: 978-1-62708-210-5
... temperature on tensile properties and the influence of temperature on compressive yield strength of alloy 2618-T61 hand-forged billets are illustrated. aluminum alloy 2618 aluminum alloy 2618A aluminum-copper-magnesium-nickel alloys compressive yield strength creep-rupture properties fabrication...
Abstract
This datasheet provides information on composition limits, key metallurgy, fabrication characteristics, processing effects on physical, tensile, and creep-rupture properties, and applications of Al-Cu-Mg-Ni alloys 2618 and 2618A. The influence of prolonged holding at elevated temperature on tensile properties and the influence of temperature on compressive yield strength of alloy 2618-T61 hand-forged billets are illustrated.
Image
in 2618 and 2618A: Al-Cu-Mg-Ni Alloys for High-Temperature Service
> Properties and Selection of Aluminum Alloys
Published: 15 June 2019
Fig. 2 Influence of temperature on compressive yield strength of alloy 2618-T61 hand-forged billets. Compressive yield strength determined at temperature after holding 0.5 h under no load. Value plotted as percentage of corresponding room-temperature value.
More
Image
in Properties of Wrought Aluminum and Aluminum Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 13 Influence of temperature on compressive yield strength of alloy 2618-T61 hand-forged billets. Compressive yield strength determined at temperature after holding 1 2 h under no load. Value plotted as percentage of corresponding room-temperature value
More
Image
in 2618 and 2618A: Al-Cu-Mg-Ni Alloys for High-Temperature Service
> Properties and Selection of Aluminum Alloys
Published: 15 June 2019
Fig. 1 Influence of prolonged holding at elevated temperature on tensile properties of alloy 2618-T61 hand-forged billets. Properties determined at temperature after holding for the indicated time under no load. Tensile and yield strengths plotted as percentage of corresponding room
More
Image
in Properties of Wrought Aluminum and Aluminum Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 12 Influence of prolonged holding at elevated temperature on tensile properties of alloy 2618-T61 hand-forged billets. Properties determined at temperature after holding for the indicated time under no load. Tensile and yield strengths plotted as percentage of corresponding room
More
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004040
EISBN: 978-1-62708-185-6
... of Conventional Forging with Heavy Ribs and Deep Cavities When a hand-forged billet for prototypes was replaced by a conventional closed-die forging in the manufacture of the 7075 aluminum alloy wing fitting shown in Fig. 7 , the principal design objectives were to secure heavy ribs and deep cavities...
Abstract
Machining serves as a more specialized supplement to the forging process, particularly in the formation of cavities and holes. This article provides information on the enclosures, cavities, and holes in hammer and press forgings. It provides a checklist that serves as a guide to the procedure for reviewing the design of cavities and holes to be incorporated in forgings. The article also describes forging designs in which cavities and holes are related to rib and web designs, punchout, piercing, extruding, and combinations of these processes.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003981
EISBN: 978-1-62708-185-6
... Abstract Roll forging is a process for simultaneously reducing the cross-sectional area and changing the shape of heated bars, billets, or plates. This article provides an overview of the process capabilities, production techniques, machines and machine size selection considerations, and types...
Abstract
Roll forging is a process for simultaneously reducing the cross-sectional area and changing the shape of heated bars, billets, or plates. This article provides an overview of the process capabilities, production techniques, machines and machine size selection considerations, and types of roll dies and auxiliary tools for the roll forging. It concludes with information on the production examples of roll forging.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003986
EISBN: 978-1-62708-185-6
... Type of forging machine Required load and energy Forging machine stiffness Ram guidance During forging Workpiece temperature Flow stress Scale Shrinkage Billet or preform volume Lubrication Die temperature Die wear After forging Trimming Heat treatments...
Abstract
Precision forging is defined as a closed-die forging process in which the accuracy of the shape, dimensional tolerances, and surface finish exceed normal expectations to the extent that some of the postforge operations can be eliminated. This article provides an overview of the key factors that impact the precision forging process. It provides information on the achievable tolerances and presents examples of precision forging. A discussion on forging of bevel gears/spiral bevel gears is also presented.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003989
EISBN: 978-1-62708-185-6
... on a forge with four dies, known as a rotary forge. Cogging continues to be applicable for converting ingot structure to billet structure in a wide variety of processes, and its scope continues to increase, as is indicated by its incorporation into the recent production of powder-based billets. Two...
Abstract
This article describes the presses, transportation equipment, and manufacturing processes associated with cogging. It discusses the practical and metallurgical issues encountered during the conversion of ingot to billet. The article explains the use of numerical modeling as part of the continuing efforts to reduce the cost and time associated with developing new cogging sequences, increase the yield, make the processes more robust, and increase the quality of the produced product.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003998
EISBN: 978-1-62708-185-6
... between two flat dies to upset the forging stock. Open-die forging, also known as hand forging, usually precedes the closed-die forging for two main purposes. First, this preworks the alloy to obtain an adequately worked structure in the final part, especially when large parts are forged from billets...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005888
EISBN: 978-1-62708-167-2
... to an increased popularity of heating by induction are discussed in Ref 1 , 2 , 3 , 4 , 5 , 6 . Billets and bars are heated either fully ( Fig. 1 ) or partially, either in cut lengths or continuously, and are forged in presses, hammers (repeated blows), or upsetters (which gather and form the metal...
Abstract
This article provides a rough estimate of the basic parameters, including coil efficiency, power, and frequency in induction heating of billets, rods, and bars. It focuses on the frequency selection for heating solid cylinders made of nonmagnetic metals, frequency selection when heating solid cylinders made from nonmagnetic alloys, and frequency selection when heating solid cylinders made from magnetic alloys. The article describes several design concepts that can be used for induction billet heating, namely, static heating and progressive/continuous heating. It presents the four major factors associated with the location and magnitude of subsurface overheating: frequency, refractory, final temperature, and power distribution along the heating line. The article summarizes the pros and cons of using a single power supply. It also reviews the design features of modular systems, and concludes with information on the temperature profile modeling software.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
... billet material and subsequently subsolvus forged into component shapes to maintain and even refine the grain size. This fine-grain-microstructure process is typical for many superalloys ( Ref 1 ). For instance, one of the most mature superalloys, alloy 718, has continued to improve through such use...
Abstract
The thermomechanical processing (TMP) of conventional and advanced nickel and titanium-base alloys is aimed at altering or enhancing one or more metallurgical features within the material and component. This article presents a number of examples of the TMP of nickel-base superalloys and titanium alloys. The TMP techniques include retained-strain processing, dual-microstructure processing, and dual-alloy processing. The article also describes the TMP of alpha-beta titanium alloys, including fine-grain processing, hybrid-structure processing, dual-microstructure processing, and dual-alloy processing. It concludes with a discussion on computer simulation of advanced TMP processes.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004038
EISBN: 978-1-62708-185-6
.... Typical test bar locations are shown in Fig. 9(a) and (b) . When a rib is located parallel to billet orientation in the die, the lateral flow of metal has the effect of cross working as it fills the die. On the other hand, if the rib is located perpendicular to the billet orientation in the die...
Abstract
Ribs and bosses are the integral functional elements or features of a forging that project outward from a web in a direction parallel to the ram stroke. This article describes the design, functions, and producibility of ribs and bosses. It relates their design to grain flow, metallurgical structure, measurement details, and design parameters, with supplementary data obtained from the examples of actual forgings.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005840
EISBN: 978-1-62708-167-2
..., and techniques for the design and manufacture of modern induction forge coils. Design Philosophies Manufacturers have developed different philosophies regarding coil design in the years since induction heating began to be used for heating billets, bars, and slabs. Terms often used to describe coils relate...
Abstract
This article is a compilation of best practices, materials, and techniques for the design and manufacture of modern induction forge coils. It presents the basics of induction coil design along with various design considerations, namely, copper tube selection, water flow considerations, and brazing and fabricating the copper coil winding for heating billets, bars, and slabs. The article describes refractory selection criteria and the methods of mounting and securing the induction coil winding, and presents general refractory installation guidelines for induction heating applications. It provides information on curing, form removal, dryout, and coil refractory seasoning. Wear rails that are designed to prevent damage to the coil refractory and subsequent coil winding are also discussed. The article concludes with a discussion on preventive maintenance practices for induction forging coils.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004032
EISBN: 978-1-62708-185-6
... is desirable to reduce the heat transfer during the lubricant application, the billet placement on the die, the actual forging deformation, and during the dwell and ejection operations. The die chill can cause significant underfilling and flow localization in temperature-sensitive workpiece materials...
Abstract
This article lists functions of lubricants common to the majority of applications and processes. It discusses the lubricant candidates widely used in forging: conversion coatings with soaps (stearate compounds) and molybdenum disulfide for cold forging; oil-based thick, film oil or polymerbased lubricants and molybdenum disulfide for warm application; graphite suspensions in oil or water for hot forging steels; and glass films for titanium and superalloys hot forgings. The article describes the applications of lubricants in warm extrusion and forging, hot forging of steel, hot forging of aluminum, isothermal and hot die forging, and the extrusion of steel.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004031
EISBN: 978-1-62708-185-6
... of the in progressive order through three tools necking has occurred. sheet. mounted in one forging machine; only one brittle fracture. A fracture that occurs without heat is involved for all three operations. appreciable plastic deformation. billet. (1) A semi nished section that is hot rol- brittleness. A tendency...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.9781627081856
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
.... The reason for the delay was the absence of methods for achieving the high temperatures needed to melt and to refine iron ore. Most metalworking was done by hand until the 13th century. At this time, the tilt hammer was developed and used primarily for forging bars and plates. The machine used water...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003997
EISBN: 978-1-62708-185-6
...% are permissible in Cu-40%Zn duplex brasses. On the other hand, more than 0.10% Pb in a Cu-30%Zn alpha brass can lead to catastrophic high-temperature cracking. As a rule of thumb, leaded brasses show better forgeability if their beta contents are greater than 50%. Forging temperatures, which vary with alloy...
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005155
EISBN: 978-1-62708-186-3
... grains or at grain shell or box shape whose walls were pre- viously straight. bulk forming. Forming processes, such as extrusion, forging, rolling, and drawing, in which the input material is in billet, rod, or slab form and a considerable increase in surface-to-volume ratio in the formed part occurs...
1