Skip Nav Destination
Close Modal
Search Results for
gun reamers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 24 Search Results for
gun reamers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1989
Fig. 14 Typical gun reamers for through holes. (a) Fixed-head (conventional) type. (b) Replaceable-head type
More
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002136
EISBN: 978-1-62708-188-7
..., spiral-flute chucking, adjustable, end-cutting, shell, floating-blade, gun, and special-purpose reamers, with examples. accuracy adjustable reamers cutting fluids end-cutting reamers floating-blade reamers gun reamers hardness machining reaming roughness shell reamers special-purpose...
Abstract
Reaming is a machining operation in which a rotary tool takes a light cut to improve the accuracy of the round hole and reduce the roughness of the hole surface. This article describes its process capabilities and provides information on workpiece material and hardness, as well as the machines used. Reamer materials and design, speed and feed, bushings and fixtures, and cutting fluids used are also discussed. The article outlines the factors to be considered while selecting a reamer. It also discusses the applications of the principle types of reamers, namely, straight-flute chucking, spiral-flute chucking, adjustable, end-cutting, shell, floating-blade, gun, and special-purpose reamers, with examples.
Image
Published: 01 January 1989
Fig. 15 Gun reaming of a taper-cored hole. Dimensions in figure given in inches Reaming conditions Machine Turret lathe Speed, at 329 rev/min, m/min (sfm) 58 (190) Feed, mm/rev (in./rev) 0.1 (0.004) Stock reamed on diameter, mm (in.) 4.8–9.5 ( 3 16 – 3 8
More
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002186
EISBN: 978-1-62708-188-7
... . Feed depends on hole size and usually ranges from 0.025 to 0.76 mm/rev (0.001 to 0.030 in./rev) for holes (1.6 to 51 mm ( 1 16 to 2 in.) in diameter, as shown in Table 2 . Nominal speeds and feeds for the drilling, gun drilling, reaming, and counterboring of magnesium alloys Table 2...
Abstract
Magnesium is machined in low-volume production on small, manually operated machine tools and on large, specially built, completely automated transfer machines operating at high production rates. This article focuses on the factors that affect the machining of magnesium. It discusses chip formation and distortion due to thermal expansion, cold work, and clamping and provides information on magnesium-matrix composites. The article describes materials, design, and sharpness as factors for selection of tool for machining magnesium. It illustrates turning and boring, planing and shaping, broaching, drilling, reaming, counterboring, milling, sawing, and grinding operations performed on magnesium. Safety measures related to machining, handling of chips and fines, and fire extinguishing are also discussed.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002188
EISBN: 978-1-62708-188-7
... between the work and tailstock. Spade drills are made of high-speed steel; the cutting edges can be tipped with carbide. Lead holes should be made with a drill having a point smaller than that of the spade drill. Table 7 lists speeds and feeds for spade drilling. Speeds and feeds for the spade and gun...
Abstract
Nickel-base alloys can be machined by techniques that are used for iron-base alloys. This article discusses the effects of distortion and microstructure on the machinability of nickel alloys. It tabulates the classification of nickel alloys based on machining characteristics. The article describes the machining operations performed on nickel alloys, such as turning, planing and shaping, broaching, reaming, drilling, tapping and threading, milling, sawing, and grinding. It provides information on the cutting fluids used in the machining of nickel alloys. The article also analyzes nontraditional machining methods that are suitable for shaping high-temperature, high-strength nickel alloys. These include electrochemical machining, electron beam machining, and laser beam machining.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002184
EISBN: 978-1-62708-188-7
... be machined with carbide or diamond tools, unless runs are short. For short runs, high-speed steel is usually satisfactory. Complexly shaped cutters such as twist drills, reamers and counterbores, taps and other thread-cutting tools, end mills and many other types of milling cutters, and form tools are widely...
Abstract
This article begins with a discussion on the classification of aluminum alloys and the selection of alloy and temper based on machinability. It provides an overview of cutting force and power, tool design and material, and general machining conditions. In addition, the article discusses distortion and dimensional variation and machining problems during the machining of high-silicon aluminum alloy. It also provides information on tool design and material, speed and feed, and the cutting fluid used for various machining processes, namely, turning, boring, planing and shaping, broaching, reaming, tapping, milling, sawing, grinding, honing, and lapping. The article concludes with a discussion on drilling operations in automatic bar and chucking machines and drill presses.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006494
EISBN: 978-1-62708-207-5
... is usually satisfactory. Complexly shaped cutters such as twist drills, reamers, counterbores, taps, end mills, and form-cutting tools are widely used in machining aluminum parts. For general machining and for relatively short-run production, single-point cutting tools of high-speed steel are also commonly...
Abstract
The horsepower requirements to cut various metal alloys provide an indication of the relative ease and cost of machining, but several other important factors include cutting tool material, chip formation, cutting fluids, cutting tool wear, surface roughness, and surface integrity. This article reviews these general machining factors as well as specific cutting tool and cutting parameters for the six basic chip-forming processes of turning, shaping, milling, drilling, sawing, and broaching. Best practices for each of the six chip-forming processes are suggested for optimized machining of aluminum alloys. The article lists the inherent disadvantages of machining processes that involve compression/shear chip formation. It discusses the machining of aluminum metal-matrix composites and nontraditional machining of aluminum, such as abrasive jet, waterjet, electrodischarge, plasma arc, electrochemical, and chemical machining.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002185
EISBN: 978-1-62708-188-7
... (0.001) … … … … … … … 18 (60) 23 (75) … 0.075 (0.003) 10 (0.004) 0.20 (0.008) 0.25 (0.010) 0.30 (0.012) 0.38 (0.015) 0.50 (0.020) (a) 20–70 HRB. (b) 60–100 HRB. Source: Metcut Research Associates Inc. Nominal speeds for the gun drilling of copper alloys with carbide...
Abstract
This article begins with a discussion on machinability ratings of copper and copper alloys and then describes the factors influencing the machinability ratings. It explains the effect of alloying elements, cold working, and cutting fluid on the machinability of copper and copper alloys. In addition, the article provides a comprehensive discussion on various machining techniques that are employed for machining of copper and copper alloys: turning, planing, drilling, reaming, tapping and threading, multiple operation machining, milling, slitting and circular sawing, power band sawing and power hacksawing, grinding, and honing.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002189
EISBN: 978-1-62708-188-7
... 65 to 75% threads in shallow through holes. Reduce speed when tapping deep holes, blind holes, or higher percentages of thread. Source: Metcut Research Associates Inc. Reaming Holes with a tolerance of +0.05 to −0.000 mm (+0.002 to −0.000 in.) are possible. Reamer margins tend to gall...
Abstract
This article focuses on the machining of reactive metals which refer collectively to the elements titanium, hafnium, and zirconium. It provides guidelines for machining titanium and titanium alloys and describes machining operations, such as turning, milling, drilling, tapping, reaming, grinding, and sawing, performed on titanium and its alloys. The article also provides information on electrochemical machining (ECM), chemical milling (CHM), and laser beam machining (LBM) for titanium and titanium alloys. Guidelines for machining zirconium alloys and hafnium are also provided. The article provides a short description of turning, milling, and drilling operations performed on zirconium alloys and hafnium. It also discusses health and safety considerations related to zirconium and hafnium.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002183
EISBN: 978-1-62708-188-7
Abstract
This article provides a discussion on cutting tools, their materials and design; cutting fluids; and various aspects of machining operations of heat-resistant alloys, with several examples. Operations such as turning, planing and shaping, broaching, drilling, reaming, counterboring and spotfacing, tapping and thread milling, milling, sawing, and grinding are discussed. Nominal compositions of wrought heat-resistant alloys and nickel-base heat-resistant casting alloys, as well as compositions of cobalt-base heat-resistant casting, iron-base heat-resistant casting, and mechanically alloyed (oxide dispersion strengthened) products are also listed.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002134
EISBN: 978-1-62708-188-7
... produces better accuracy and finish than can be obtained by milling or reaming. Although the relative motion between the broaching tool and the work is usually a single linear one, a rotational motion can be added to permit the broaching of spiral grooves, as in spiral splines or in gun-barrel rifling...
Abstract
This article discusses the fundamentals of broaching, including broach tooth terminology, broach cutting action, and broach size. It describes two types of broaching machines: horizontal and vertical. The article illustrates three general categories of broaches: solid, shell, and insert-type. It tabulates feeds and speeds for broaching various steels with high-speed tool steels and carbide tools. The article also describes the advantages and limitations of broaching and provides a brief discussion on burnishing. The causes and prevention of broach breakage are also discussed. The article concludes with information on broach repair.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002135
EISBN: 978-1-62708-188-7
... ( Fig. 10 ). These machines may be of either the horizontal or the vertical type, with either single-spindle or multiple-spindle construction. In addition, either the workpiece or the drill may revolve. Most machines are of horizontal construction, using a center-cut gun drill having a single cutting...
Abstract
This article focuses on machines that are designed, constructed, and used for drilling. It provides information on the design, materials, selection, and classification of drill. The article describes drills that are specially designed for hard steel and other specific applications. A variety of drill point styles, such as single-angle points and reduced-rake points, are described. The article discusses the factors considered to obtain expected dimensional accuracy of holes. It explains the determination of the optimum speed and feed for drilling, which depends on the workpiece material, tool material, depth of hole, design of drill, rigidity of setup, tolerance, and cutting fluid. The article illustrates the effects of operating variables on drill life of hardened steel. The advantages, limitations, design considerations, insert configurations, and applications of indexable-insert drills are discussed. The article concludes with a discussion on the requirements to drill small holes that differ from those used in conventional drilling.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002180
EISBN: 978-1-62708-188-7
Abstract
The machinability of stainless steels varies from low to very high, depending on the final choice of the alloy. This article discusses general material and machining characteristics of stainless steel. It briefly describes the classes of stainless steel, such as ferritic, martensitic, austenitic, duplex, and precipitation-hardenable alloys. The article examines the role of additives, such as sulfur, selenium, tellurium, lead, bismuth, and certain oxides, in improving machining performance. It provides ways to minimize difficulties involved in the traditional machining of stainless steels. The article describes turning, drilling, tapping, milling, broaching, reaming, and grinding operations on stainless steel. It concludes with information on some of the nontraditional machining techniques, including abrasive jet machining, abrasive waterjet machining electrochemical machining, electron beam machining, and plasma arc machining.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002181
EISBN: 978-1-62708-188-7
...-hardening tool steels, W Cutting tools Single-point types (lathe, planer, boring) Milling cutters Drills Reamers Taps Threading dies Form cutters General-purpose production tools: M2, T1 For increased abrasion resistance: M3, M4, M10 Heavy-duty work calling for high hot hardness: T5, T15 Heavy-duty...
Abstract
This article describes the selection of tool steels on the basis of specific product applications. It contains tables that list nominal speeds and feeds for the machining of various tool steels. The machining processes include turning, boring, broaching, drilling, reaming, tapping, milling, and sawing. The article explains the machining of the following tool steels: water hardening; types A, D and O cold-work; hot work; high speed, low-alloy special-purpose; and low-carbon mold. It details the machining of tool steel gears. The article also discusses the grinding of tool steels based on steel classification and the effects of steel composition and hardness on grindability. It reviews the types of grinding, namely, surface grinding, cylindrical grinding, centerless grinding, internal grinding, thread grinding, flute grinding, and low-stress grinding. Grinding of types-A, D, F, L, O, P, S and W steels, hot-work steels, and high speed steels, is also detailed.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002178
EISBN: 978-1-62708-188-7
Abstract
This article discusses the factors influencing cast iron machining and selection of cutting fluid and cutting tool materials. It presents a comparison of machinability of different types of cast iron, namely, gray cast iron, ductile cast iron, and malleable cast iron. In addition, the article provides an overview of different methods used in the machining of cast iron, namely, turning, boring, broaching, planing and shaping, drilling, reaming, counterboring and spotfacing, tapping, milling, grinding, and honing and lapping. Nominal speeds and feeds for the machining of cast iron with single-point and box tools, ceramic tools, high-speed steel, and carbide tools are also tabulated.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001276
EISBN: 978-1-62708-170-2
..., hot application Thick, nondrying, dark, firm, grease-like film; leaves oil slick on salt water (a) Unshielded outdoor storage of gun tubes; long-term protection of highly finished parts of simple design Class 2 Corrosion-preventive compound, petrolatum, hot application Thick, dark, medium...
Abstract
Rust-preventive compounds are removable coatings used for the protection of the surfaces of iron, steel, coated or galvanized products, and other alloys. This article describes the basic parts of rust-preventive compounds, namely, carrier, film former, polar materials, and specialty additives. It explains types of rust-preventive compounds, including dry films and water-based dry films. The article also discusses the methods of application of various compounds, such as petrolatum compounds and emulsion compounds. It contains tables that provide information on the characteristics, applications, and physical properties of rust-preventive materials covered by military specifications. Finally, the article describes the various considerations and parameters for selecting rust-preventive materials.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006079
EISBN: 978-1-62708-175-7
... and toughness are required to 595 °C (1100 °F); cutting tools, shear blades, reamers, dies, ingot tongs Iron-manganese Low (similar to carbon steel) Excellent Low yield point deformation Poor; grind if required Austenite saturated with carbon; iron-manganese carbides at grain boundaries in thin, flat...
Abstract
Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications and the specific powder properties and characteristics they require.
Book
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.9781627081702
EISBN: 978-1-62708-170-2
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005585
EISBN: 978-1-62708-170-2
... variation in which an air stream carries the powdered material to be sprayed through the gun and into the heat source. air gap. In extrusion coating, the distance from the die opening to the nip formed by the pressure roll and the chill roll. air bole. A hole in a casting caused by air or gas trapped...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001092
EISBN: 978-1-62708-162-7
... used for the conventional tin-lead solders. In the case of preforms, oven heating is used for short runs, and conveyor-type furnaces are used for large runs. In special cases, the use of induction heating, heat guns, or reducing atmospheres is recommended. Vapor-phase soldering with indium-base alloys...
Abstract
This article focuses on the use of indium and bismuth in low-melting-temperature solders and fusible alloys. It describes how the two elements typically occur in nature and how they are recovered and processed for commercial use. It also provides information on designations, classification, composition, properties (including temperatures ranges), and some of the other ways in which indium and bismuth alloys are used.
1