Skip Nav Destination
Close Modal
By
ASM International Committee on Nondestructive Testing of Composites , R.H. Bossi, D.E. Bowles, Y. Bar-Cohen, T.E. Drake ...
Search Results for
guided wave modes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 216 Search Results for
guided wave modes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006441
EISBN: 978-1-62708-190-0
... of the other contexts in which its use is growing in other evolving applications. It discusses the various guided wave modes and their selection criteria. The article provides information on considerations for mode control and the sensitivity of the GWT to the defect. It also shows some examples of advanced...
Abstract
Guided wave testing (GWT) is a method of nondestructive evaluation for the inspection of pipelines. This article focuses mainly on explaining GWT as it is applied in routine established use, covered by standards, in the oil and gas industry and also introduces some of the other contexts in which its use is growing in other evolving applications. It discusses the various guided wave modes and their selection criteria. The article provides information on considerations for mode control and the sensitivity of the GWT to the defect. It also shows some examples of advanced GWT.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006458
EISBN: 978-1-62708-190-0
... at which a particular volume must be interrogated may dictate using guided waves. As described subsequently, both PETs and EMATs could generate the wave modes inferred by these statements. However, the practical range of angles available when using some EMATs is different from those available with PETs...
Abstract
This article describes the basic features of electromagnetic acoustic transducers (EMATs) and discusses their existing and some potential uses within the field of ultrasonic nondestructive evaluation (UNDE). It provides sufficient basic and practical information to make an informed choice when considering the transducer to be used for any particular UNDE application. The article describes how different types of EMATs operate and presents their fundamental and some practical limitations. It summarizes the representative literature for electromagnetic acoustic transducer UNDE applications. Some successful uses of EMATs are mentioned to illustrate the depth, range, and potential of commercial EMAT applications. The article concludes with information on the commercial sources for EMAT systems and components.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003658
EISBN: 978-1-62708-182-5
... of the structure with small changes in frequency, and these signals constructively combine to form wave packets that travel within structure much like a wave guide. Some wave packets, or modes, can travel long distances without significant attenuation once they are formed ( Ref 11 ), and these are the richest...
Abstract
Microwave and guided wave (GW) nondestructive evaluation (NDE) techniques are capable of detecting corrosion damage, cracks, and other defect types in inaccessible areas. This article describes the operation principles of the techniques and provides information on hidden corrosion detection and the applications of microwave NDE devices and GW ultrasonic NDE devices.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006471
EISBN: 978-1-62708-190-0
... with horns for high power and for a range of specialized nondestructive testing (NDT) applications. Magnetostriction is used for lower frequencies; a common application now is guided wave generation ( Ref 6 ). In looking more widely at options for ultrasound generation that generally are considered...
Abstract
This article discusses the advantages, disadvantages, applications, and selection criteria of various technologies and transduction modalities that can generate and detect ultrasonic waves. These include piezoelectric transducers, electromagnetic acoustic transducers (EMATs), laser ultrasound phased array transducers, magnetostriction transducers, and couplants. The article discusses four basic types of search units with piezoelectric transducers. These include the straight-beam contact type, the angle-beam contact type, the dual-element contact type, and the immersion type. The article concludes with information on immersion or contact type focused search units.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006461
EISBN: 978-1-62708-190-0
... wave will mode convert to a guided wave within the wedge-shaped section of an inclined crack, and the amplitude detected depends on whether one is measuring the in-plane or out-of-plane component of the wave, as well as the frequency-thickness product at that point ( Ref 2 , 51 ). Fig. 11...
Abstract
This article provides an overview of the characteristics of Rayleigh waves plus methods for generation and detection of waves, including using piezoelectric transducers or noncontact techniques such as lasers, electromagnetic acoustic transducers, or air-coupled ultrasonics. It reviews the methods for using Rayleigh waves for defect detection and materials characterization, alongside nonlinear ultrasonic inspection and surface acoustic wave (SAW) microscopy. The article concludes with information on the standards that use Rayleigh waves for nondestructive evaluation (NDE) of different structures.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006470
EISBN: 978-1-62708-190-0
... generation and detection are discussed in the article “Guided Wave Testing” in this Volume. Fig. 8 Example of dispersion curves, calculated for aluminum 1.0 mm thick, with symmetric and antisymmetric modes, shown in normalized units (MHz-mm). A 0 and S 0 are fundamental modes; index indicates...
Abstract
Ultrasonic inspection is a family of nondestructive methods in which beams of high-frequency mechanical waves are introduced into materials, using transducers, for the detection and characterization of both surface and subsurface anomalies and flaws in the material. This article describes the basic equipment in ultrasonic inspection systems, and lists the advantages and disadvantages of these systems. It discusses the applications of ultrasonic inspection and also the general characteristics of ultrasonic waves in terms of wave propagation, longitudinal waves, transverse waves, surface waves, and lamb waves. The article reviews the major variables in ultrasonic inspection, including frequency, acoustic impedance, angle of incidence, and beam intensity. It discusses the attenuation of ultrasonic beams and provides information on the pulse-echo and transmission methods for implementing ultrasonic inspection.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006469
EISBN: 978-1-62708-190-0
... that is considerably less than the theoretical maximum. Attenuation in a test piece can limit the path length. The practical limit for inspection depth varies with the type and condition of the test material, wave mode, test frequency, and system sensitivity. Furthermore, it is highly desirable for all ultrasonic...
Abstract
This article considers the two primary methods used for ultrasonic inspection: pulse-echo and the transmission methods. Pulse-echo inspection can be accomplished with longitudinal, shear, surface (Rayleigh), or Lamb (plate) waves using a diverse range of transducers. The article discusses the principles of each of these inspection methods. It describes the applications and the basic data formats for single-element transducer-based systems, including A-scans, B-scans, and C-scans. The article provides information on electronic equipment used for ultrasonic inspection. It also describes how specific material conditions produce and modify A-scan indications. The article provides information on the controls and their functions for the display unit of the electronic equipment. It describes the techniques used for the identification and characterization of flaws, namely, surface (Rayleigh) wave and ultrasonic polar scan techniques.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
..., the electrode positive mode is favored; when maximum heat is desired, the electrode negative mode is favored. In general, square-wave power sources are much less susceptible to arc rectification than sine-wave power sources, although it still sometimes occurs. Equipment Power Supplies Power supplies...
Abstract
The gas tungsten arc welding (GTAW) process derives the heat for welding from an electric arc established between a tungsten electrode and the part to be welded. This article provides a discussion on the basic operation principles, advantages, disadvantages, limitations, and applications of the process. It describes the equipment used for GTAW, namely, power supplies, torch construction and electrodes, shielding gases, and filler metals as well as the GTAW welding procedures. The article concludes with a review of the safety precautions to avoid possible hazards during the GTAW process: electrical shock, fumes and gases, arc radiation, and fire and explosion.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006438
EISBN: 978-1-62708-190-0
... transducers, water or air immersion transducers, or laser velocimetry sensors. Guided wave ultrasound using piezoelectric, EMAT, or magnetostrictive sensors. This is a growing inspection approach because of advancement of techniques for focusing, steering, temperature, and dispersion curve compensation...
Abstract
This article provides a discussion on general nondestructive evaluation (NDE) science and considerations for specific technique selection. It explains the basic concept of flaw detection and evaluation and probability of detection. The article provides an overview of NDE methods with their applications, limitations, and advantages. It includes details on NDE codes, calibration standards, inspection frequency, guidance on how to perform inspections, applicability, and mandatory and nonmandatory practice. The article also provides tips on where to focus inspections in order to align with the likely areas of damage or degradation and a number of other aspects of inspection.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
...) enclose the bubbles for a class. Fig. 2 Young's modulus, E , plotted against density, ρ, for various engineered materials. The heavy envelopes enclose data for a given class of material. The diagonal contours show the longitudinal wave velocity. The guide lines of constant E /ρ, E 1/2 /ρ...
Abstract
Properties of an engineering material have a characteristic range of values that are conveniently displayed on materials selection charts. This article describes the plotting of data on these charts. It discusses the features of various types of material property charts, namely, modulus-density, strength-density, fracture toughness-density, modulus-strength, specific stiffness-specific strength, fracture toughness-modulus, fracture toughness-strength, loss coefficient-modulus, thermal conductivity-thermal diffusivity, thermal expansion-thermal conductivity, thermal expansion-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006472
EISBN: 978-1-62708-190-0
... technique provides information not only on the diffracted waves but also on the different propagation modes, such as: The lateral wave: This wave mode propagates following the shortest path between the transducers, and it is the first signal in the B-scan screen. This signal represents the surface...
Abstract
Time-of-flight diffraction (TOFD) is an ultrasonic technique used to detect diffracted waves from crack tips and to size the cracks from the arrival times of those waves. This article discusses the basic considerations and provides information on probe selection, gain setting, and instrumentation of TOFD. It describes the numerous effects that result from modifying the probe characteristics. The article provides the American Society of Mechanical Engineers (ASME), the European Committee for Standardization (CEN), and the International Standardization Organization (ISO) recommendations for the reference blocks according to applicable codes and standards. It also provides the ASME, CEN, and ISO recommendations for examination of welds. The article concludes with information on the interpretation and analysis of TOFD images with an aid of sizing algorithms.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006474
EISBN: 978-1-62708-190-0
... frequencies from 3 to 5 MHz in a tone-burst mode, creating wave trains of 100 µs duration. Parts could then be scanned to give larger-area inspection. Fig. 1 Schematic showing elements in the real-time ultrasonic imaging system. Courtesy of Pacific Northwest National Laboratory The technique has...
Abstract
Acoustical holography is the extension of holography into the ultrasonic domain. The basic systems for acoustical holography are the liquid-surface type and the scanning type. This article discusses the applications for acoustical holography, including inspection of large composite parts, through-transmission breast imaging system, inspection of welds in thick materials, and inspection of sleeve-bearing stock. It describes the basic system for liquid-surface acoustical holography and scanning acoustical holography. A comparison between these techniques is also provided.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006446
EISBN: 978-1-62708-190-0
... of practical application. There are a variety of wave modes available for nonlinear ultrasonics (NLU), including bulk, surface, and guided waves. An advantage of NLU is that the acoustic nonlinearity parameter (β) measured using any wave type can be related back to the material nonlinearity, meaning...
Abstract
Nonlinear ultrasonic nondestructive examination (NDE) techniques are based on nonlinear interaction of ultrasonic waves with the material to be characterized and defects to be detected. This article introduces the basic principles of nonlinear material-wave interaction, the origin of intrinsic nonlinearity in intact solids, and the main mechanisms of excess nonlinearity in damaged metals. It describes the measurement methods for nonlinear ultrasonic materials characterization and flaw-detection. The article schematically illustrates the instrumentation used for measurements of longitudinal wave and Rayleigh surface acoustic waves. It concludes with information on the applications of nonlinear ultrasonics.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006473
EISBN: 978-1-62708-190-0
... and inspection requirements. A further constraint is then the limited viewing angles for an inspection and the inspection methodology (e.g., pulse-echo) and inspection system employed, which defines wave type, frequency, and wave-field characteristics, including the need for required coverage and resulting data...
Abstract
This article discusses the inspection/reference standards that are absolutely critical for proper application of ultrasonic inspection systems. Many of the standards and specifications for ultrasonic inspection require the use of standard reference blocks. The article lists the variables that should be considered when selecting standard reference blocks and describes the three types of standard blocks ordinarily used for calibration or reference: area-amplitude blocks, distance-amplitude blocks, and blocks of the type sanctioned by the International Institute of Welding. It reviews the determination of area-amplitude and distance-amplitude curves of a straight-beam pulse-echo ultrasonic inspection system. The article discusses the three principal conventional manual ultrasonic sizing techniques: 6 dB drop technique, maximum-amplitude technique, and 20 dB drop technique. It provides information on the dimension-measurement applications of ultrasonic inspection methods.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.9781627081900
EISBN: 978-1-62708-190-0
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003436
EISBN: 978-1-62708-195-5
... macrocracks, and voids in composites structures. The ultrasonic method itself uses longitudinal, shear, Lamb, Rayleigh, or guided waves for various measurements on composite materials. Wave parameters, including acoustic attenuation and speed, can be used to determine materials properties and characteristics...
Abstract
This article introduces the principal methodologies and some technologies that are being applied for nondestructive evaluation of composite materials. These include ultrasonic testing (UT), air-coupled UT, laser UT, ultrasonic spectroscopy, leaky lamb wave method, acousto-ultrasonics, radiography, X-ray computed tomography, thermography, low-frequency vibration methods, acoustic emission, eddy current testing, optical holography, and shearography. The article presents some examples are for fiber-reinforced polymer-matrix composites. Many of the techniques have general applicability to other types of composites such as metal-matrix composites and ceramic-matrix composites.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006478
EISBN: 978-1-62708-190-0
..., matrix macrocracks, and voids in composite structures. The ultrasonic method itself uses longitudinal, shear, Lamb, Rayleigh, or guided waves for various measurements on composite materials. Wave parameters, including acoustic attenuation and speed, can be used to determine materials properties...
Abstract
This article introduces the principal methodologies and some advanced technologies that are being applied for nondestructive evaluation (NDE) of fiber-reinforced polymer-matrix composites. These include acoustic emission, ultrasonic, eddy-current, computed tomography, electromagnetic acoustic transducer, radiography, thermography, and low-frequency vibration methods. The article also provides information on NDE methods commonly used for metal-matrix composites.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006400
EISBN: 978-1-62708-192-4
... and detection of leaks, rolling damage, and cracks. Acoustic emission testing is a CM technique that has been used to analyze emitted sound waves caused by defects or discontinuities. It is the phenomenon of transient waves generated due to the rapid release of strain energy caused by small deformations...
Abstract
This article introduces the concept of condition monitoring (CM) and summarizes various techniques used for CM across the industrial sectors. The techniques include visual inspection, performance monitoring, vibration condition monitoring, vibration condition monitoring, lubricant oil analysis, acoustic emission testing, temperature monitoring, motor current signature analysis, and ultrasound emission. The article describes the evolution of condition-based maintenance in CM. It also describes the basics of integrated vehicle health management, a capability that enables a number of maintenance philosophies. The article concludes with a discussion on various condition monitoring in industrial sectors, including condition-monitoring techniques in nuclear power plants, road condition monitoring, and condition monitoring in wind turbines.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006466
EISBN: 978-1-62708-190-0
... images of a sample throughout its entire thickness (reflection mode sometimes is employed). In operation, ultrasound is introduced to the bottom surface of the sample by a piezoelectric transducer, and the transmitted wave is detected on the top side by a rapidly scanning laser beam. The other two...
Abstract
This article discusses the fundamentals and operating principles of the following acoustic microscopy methods: scanning laser acoustic microscopy, C-mode scanning acoustic microscopy, and scanning acoustic microscopy. It describes the applications of acoustic microscopy for detecting defects in metals, ceramics, glasses, polymers, and composites with examples.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003653
EISBN: 978-1-62708-182-5
... used method because of the complex nature of the waves and noise signals generated during its application. The new developments in signal processing and the hardware and software designs of ultrasonic guided wave methods have made it possible to sense defects in inaccessible areas under coatings...
Abstract
This article focuses on the methods that are being developed for detecting and monitoring corrosion: electrochemical methods, electromagnetic or sound wave methods, fiber-optic technology, fluorescence methods, and the Diffracto Sight method. It reviews the importance of data management and the Corrosion Expert System. It concludes with information on the simulation and modeling for incorporating the mechanisms of corrosion prevention into military hardware systems design and operation.