Skip Nav Destination
Close Modal
Search Results for
grinding devices
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 560 Search Results for
grinding devices
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1989
Fig. 34 Workholding methods and devices utilized in cylindrical grinding. Chuck for supplementary support (c) includes tailstock center such as bull nose type for bores, back centers for parts susceptible to deflection, and center rest to leave the other end free for face or external grinding
More
Image
Published: 01 December 2004
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002141
EISBN: 978-1-62708-188-7
... used) Devices for truing or dressing the grinding wheel to generate the required form in the workpiece Inclinable plane of rotation of the grinding wheel to cut the required helix Thread grinding machines differ in the type of grinding wheel used (single ribbed or multiribbed), the method...
Abstract
This article discusses the various elements of thread grinding processes, including thread grinding machines, tolerances, wheel selection, grinding speed, and grinding fluids. It describes truing of grinding wheels and reviews the process applications. In addition, the article describes the five basic methods employed for cylindrical thread grinding, namely, single-rib wheel traverse grinding, multirib wheel traverse grinding, multirib wheel plunge grinding, multirib wheel skip-rib, or alternate-rib, grinding, and multirib wheel three-rib grinding. It also provides an overview of centerless grinding of threads and high-volume applications of thread grinding.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005355
EISBN: 978-1-62708-187-0
... Abstract After solidification and cooling, further processing and finishing of the castings are required. This article describes the general operations of shakeout, grinding, cleaning, and inspection of castings, with particular emphasis on automation technology. It illustrates the vertical...
Abstract
After solidification and cooling, further processing and finishing of the castings are required. This article describes the general operations of shakeout, grinding, cleaning, and inspection of castings, with particular emphasis on automation technology. It illustrates the vertical core knockout machine and the A-frame core knockout machine and lists the advantages and disadvantages of these machines. The article describes the general factors in automated or manual gate removal process. It concludes with discussion on the various types of inspection, such as the liquid penetrant inspection, pressure testing, radiographic inspection, magnetic particle inspection, and ultrasonic inspection.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002152
EISBN: 978-1-62708-188-7
.../grade Porosity Thermal conduction Operational factors Fixtures Wheel balancing Truing, dressing, and conditioning techniques and devices Grinding cycle optimization Inspection methods Work material Properties Mechanical Thermal Microstructural...
Abstract
Superabrasives collectively refer to the diamond and cubic boron nitride (CBN) abrasives used in grinding applications. This article discusses the classification of superabrasive wheels according to a variety of sizes and shapes, construction, concentration, and bond systems. It provides information on the applications of the superabrasive wheels depending on the factors of the grinding system. These factors include machine tool variables, work material, wheel selection, and operational factors. The article describes the methods available for superabrasive wheel truing in production grinding operations, namely, stationary tool, powered, and form truings. It reviews the truing methods, such as truing with abrasive wheels and hard ceramics, for batch production. The article explains practical methods available for dressing CBN wheels, namely, abrasive stick, abrasive-jet, slurry, and high-pressure waterjet dressing. It concludes with information on the conditioning process of the CBN wheel.
Image
Published: 01 January 2000
Fig. 3 Different scratch devices. (a) and (b) Linear. (c) Rotary. (d) Pendulum. (e) Grinding type. Source: Ref 4
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005729
EISBN: 978-1-62708-171-9
... and Techniques Prepared specimens, in order to be metallographically processed, usually are encapsulated in cylindrical polymeric mounts. Mounts allow gripping either by hand or in a holder for use in automatic grinding/polishing devices. Many materials and associated processes are available for mounting...
Abstract
Metallographic examination is a critical step in the assessment of thermal spray coating characteristics. This article discusses the major steps involved in metallographic examination: sectioning, mounting, grinding, polishing, optical microscopy, and image analysis. It provides a discussion on etching to reveal grain structure. The article also provides recommendations for metallographic examination of some standard coatings.
Image
Published: 01 January 1989
Fig. 2 Wheel truing of rounded-crest (a) and straight-line (b) thread profiles using diamonds as a truing device. The profile in (a) is generated by a single tool in which the flank surfaces are produced by straight-line motions parallel with the trued profile sections, while the radius
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002116
EISBN: 978-1-62708-188-7
... of a machine tool—a dual-turret numerically controlled (NC) lathe. Workpieces are held in workholding devices, such as a three-jaw chuck. The tools used to cut metal are in the turrets. Other examples of basic machine tools are milling machines, drill presses, grinders, shapers, broaching machines, and saws...
Abstract
This article provides an overview of the independent and dependent variables of a machining process. Independent variables include workpiece material, specific machining processes, and tool materials and geometry. Cutting force and power, surface finish, and tool wear and failure are some dependent variables discussed. The article also describes the relations between the input variables and process behavior.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003245
EISBN: 978-1-62708-199-3
... more efficient abrasive. Rough polishing is most often done on a cloth-covered disk rotating at 150 rpm. The specimen is held by hand and moved in the direction opposite to the direction of wheel rotation. Alternatively, automatic devices can be used for grinding and polishing. Fine polishing...
Abstract
Proper sectioning of the surface to be examined is a very important step in preparing steel specimens. The first step in preventing damage to the metallurgical structure is to minimize the amount of sectioning that is done. This article discusses the various metallographic techniques, namely mounting, grinding, polishing, and etching involved in the microstructural analysis of carbon and alloy steels, case hardening steels, cast iron, ferrous powder metallurgy alloys, wrought and cast stainless steels, tool materials, steel castings, iron-chromium-nickel heat-resistant casting alloys and different product forms of steels.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002159
EISBN: 978-1-62708-188-7
... Abstract The ultrasonic machining (USM) process consists of two methods, namely, ultrasonic impact grinding and rotary USM. This article lists the major ultrasonic components that are similar to both rotary USM and ultrasonic impact grinding. It also provides schematic representations...
Abstract
The ultrasonic machining (USM) process consists of two methods, namely, ultrasonic impact grinding and rotary USM. This article lists the major ultrasonic components that are similar to both rotary USM and ultrasonic impact grinding. It also provides schematic representations of the components used in rotary USM and ultrasonic impact grinding. The article describes the operations of the components of the rotary ultrasonic machine and ultrasonic impact grinding machine. It discusses the applications of the rotary ultrasonic machine: drilling, milling, and surface grinding. The article concludes with information on machining characteristics of ultrasonic impact grinding.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
... devices to traditional ceramics to advanced/structural ceramics. Recognition and application of these guidelines should lead to an orderly transition for engineers familiar with the grinding of metals to produce a quality part when grinding ceramics. Fig. 1 Selected parameters that affect...
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003751
EISBN: 978-1-62708-177-1
... to carry, and, if possible, battery operated. Basically a handheld motorized grinding and polishing device is required to prepare the polished surface. Metallographic equipment suppliers provide such equipment. An entire system can be purchased for grinding, polishing, etching, observation, and replication...
Abstract
This article discusses the advantages and disadvantages of field metallography and describes the important material characteristics and other aspects to be considered before performing any metallographic procedure. It investigates the various stages of sample preparation in the metallographic laboratory: grinding, polishing, etching, preparing a replica, and obtaining a small sample. The article also illustrates the applications of field metallography with case studies.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002166
EISBN: 978-1-62708-188-7
... traversed toward the grinding wheel until the first spark occurs. At this point, the voltage drops to the normal machining range (40 to 60 V), and the servo device maintains a constant spacing between the grinding wheel and the workpiece (normally in the range of 0.0125 to 0.075 mm, or 0.0005 to 0.0030...
Abstract
Electrical discharge grinding (EDG) is much like electrical discharge machining except that the electrode (tool) is a rotating graphite wheel. This article commences with a schematic illustration of a setup for EDG wheels and discusses the control operation of the EDG setup. It tabulates typical applications and conditions for the EDG of stainless steels using 300 mm diameter wheels. The article describes the process characteristics of the EDG in terms of applications, surface finish, corner radius, and wheel wear. It concludes with a graphical illustration of the effect of heat in electrical discharge grinding on the surface hardness of various work metals.
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005748
EISBN: 978-1-62708-171-9
... working. rotated during machining or grinding. ing within a coating, as opposed to coating- collaring. Adding or cutting a shoulder onto a to-substrate bonding (adhesive strength); shaft or similar component to provide a con- circuit breaker. A device that, when properly coating tensile strength...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
... Abstract In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations...
Abstract
In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations, standard marking systems, abrasives, and bonding types. It compares bonded wheel grinding with abrasive belt grinding. The article reviews the types of grinding fluids and discusses their importance in grinding operations. It describes the specific grinding processes and provides recommendations for grinding and grinding wheels.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002128
EISBN: 978-1-62708-188-7
... be used to determine the appropriate cleaning and disposal cycles for a fluid. Many other simple metering devices are available for testing the intrinsic electrical conductivity of a cutting fluid. Storage, Cleaning, and Disposal of Cutting and Grinding Fluids The contamination of coolants...
Abstract
This article discusses the functions and chemistry of metal cutting or grinding fluids. It reviews the choice of cutting or grinding fluids that is influenced by the workpiece material, fluid characteristics, and machining operation. The article describes two application methods of cutting or grinding fluids: flooding and misting. It discusses and lists the American Society for Testing and Materials standard test procedures used in establishing control of cutting and grinding fluids. The article provides information on the storage, distribution, cleaning, and disposal of cutting and grinding fluids. It concludes with information on the health implications and biology of cutting fluids.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
..., or microprocessor-controlled devices. Units also vary in capacity from a single specimen to a half-dozen or more at a time. These systems can be used for all grinding and polishing steps. These devices enable the operator to prepare a large number of specimens per day, with a higher degree of quality than by hand...
Abstract
This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing, and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
.... Units also vary in capacity from a single specimen to a half-dozen or more at a time. These systems can be used for all grinding and polishing steps. These devices enable the operator to prepare a large number of specimens per day, with a higher degree of quality than by hand polishing and at reduced...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.