Skip Nav Destination
Close Modal
By
Brian S. Hayes, Luther M. Gammon
Search Results for
grinding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1357
Search Results for grinding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Mechanical Grinding and Polishing
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003747
EISBN: 978-1-62708-177-1
... Abstract This article illustrates how objective experiments and comparisons can be used to develop surface preparation procedures for metallographic examination of structural features of metals. These procedures are classified as machining, grinding and abrasion, or polishing. The article...
Abstract
This article illustrates how objective experiments and comparisons can be used to develop surface preparation procedures for metallographic examination of structural features of metals. These procedures are classified as machining, grinding and abrasion, or polishing. The article describes the abrasion artifacts in austenitic steels, zinc, ferritic steels, and pearlitic steels, and other effects of abrasion damages, including flatness of abraded surfaces and embedding of abrasive. Different polishing damages, such as degradation of etching contrast and scratch traces, are reviewed. The article explains the final-polishing processes such as skid polishing, vibratory polishing methods, etch-attack and electromechanical polishing, and polishing with special abrasives. An overview of special polishing techniques for unusual materials such as very hard and very soft materials is provided. The article concludes with a discussion on semiautomatic preparation procedures, providing information on procedures based on the use of diamond abrasives charged in a carrier paste and in a suspension.
Book Chapter
Rough Grinding and Polishing of Fiber-Reinforced Composite Samples
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009073
EISBN: 978-1-62708-177-1
... Abstract Rough grinding and polishing of specimens are required to prepare fiber-reinforced composite samples for optical analysis. This article discusses the consumables, process variables, and the equipment that influence the sample preparation procedure. It describes the hand and automated...
Abstract
Rough grinding and polishing of specimens are required to prepare fiber-reinforced composite samples for optical analysis. This article discusses the consumables, process variables, and the equipment that influence the sample preparation procedure. It describes the hand and automated grinding methods. The article summarizes the rough and final polishing steps for both hand and automated techniques. Common artifacts that may be created during grinding and polishing steps of composite samples are reviewed. These include scratches, fiber pull-out, matrix smears, streaks, erosion of different phases, and fiber and sample edge rounding and relief.
Book Chapter
Thread Grinding
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002141
EISBN: 978-1-62708-188-7
... Abstract This article discusses the various elements of thread grinding processes, including thread grinding machines, tolerances, wheel selection, grinding speed, and grinding fluids. It describes truing of grinding wheels and reviews the process applications. In addition, the article...
Abstract
This article discusses the various elements of thread grinding processes, including thread grinding machines, tolerances, wheel selection, grinding speed, and grinding fluids. It describes truing of grinding wheels and reviews the process applications. In addition, the article describes the five basic methods employed for cylindrical thread grinding, namely, single-rib wheel traverse grinding, multirib wheel traverse grinding, multirib wheel plunge grinding, multirib wheel skip-rib, or alternate-rib, grinding, and multirib wheel three-rib grinding. It also provides an overview of centerless grinding of threads and high-volume applications of thread grinding.
Book Chapter
Electrical Discharge Grinding
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002166
EISBN: 978-1-62708-188-7
... Abstract Electrical discharge grinding (EDG) is much like electrical discharge machining except that the electrode (tool) is a rotating graphite wheel. This article commences with a schematic illustration of a setup for EDG wheels and discusses the control operation of the EDG setup...
Abstract
Electrical discharge grinding (EDG) is much like electrical discharge machining except that the electrode (tool) is a rotating graphite wheel. This article commences with a schematic illustration of a setup for EDG wheels and discusses the control operation of the EDG setup. It tabulates typical applications and conditions for the EDG of stainless steels using 300 mm diameter wheels. The article describes the process characteristics of the EDG in terms of applications, surface finish, corner radius, and wheel wear. It concludes with a graphical illustration of the effect of heat in electrical discharge grinding on the surface hardness of various work metals.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002150
EISBN: 978-1-62708-188-7
... Abstract This article discusses the principles of grinding process. It illustrates a typical wheel-work characteristic chart relating surface finish, wheel wear rate, metal removal rate, and power to the normal force. The article also reviews the effect of variations in work material, wheel...
Abstract
This article discusses the principles of grinding process. It illustrates a typical wheel-work characteristic chart relating surface finish, wheel wear rate, metal removal rate, and power to the normal force. The article also reviews the effect of variations in work material, wheel specification, wheel speed, coolant, and grinding wheel-work conformity on the slopes of the wheel-work characteristic chart.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002161
EISBN: 978-1-62708-188-7
... Abstract This article describes the various characteristics of electrochemical grinding (ECG). It discusses grinding methods that can be performed with ECG components, namely, the electrolyte delivery and circulating system, the electrolyte, the DC power supply, grinding wheel...
Abstract
This article describes the various characteristics of electrochemical grinding (ECG). It discusses grinding methods that can be performed with ECG components, namely, the electrolyte delivery and circulating system, the electrolyte, the DC power supply, grinding wheel, and the workpiece. Grinding, surface grinding, internal grinding, form grinding, and cylindrical grinding are discussed. The article also lists the advantages, disadvantages, and applications of ECG.
Book Chapter
Electrochemical Discharge Grinding
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002162
EISBN: 978-1-62708-188-7
... Abstract Electrochemical discharge grinding (ECDG) is a combination of electrochemical grinding (ECG) and electrical discharge grinding (EDG), with some modification of each. This article commences with a schematic illustration of a setup for ECDG using a solid bonded graphite wheel...
Abstract
Electrochemical discharge grinding (ECDG) is a combination of electrochemical grinding (ECG) and electrical discharge grinding (EDG), with some modification of each. This article commences with a schematic illustration of a setup for ECDG using a solid bonded graphite wheel. It describes the process characteristics of ECDG in terms of current density, wheel speed, wear ratio, accuracy and finish, wheel maintenance, and profile grinding. The article concludes with a comparison of ECDG with EDG and ECG.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002151
EISBN: 978-1-62708-188-7
... Abstract Metal is removed from the workpiece by the mechanical action of irregularly shaped abrasive grains in all grinding operations. This article discusses three primary components of grinding wheels, namely, abrasive (the cutting tool), bond (the tool holder), and porosity or air for chip...
Abstract
Metal is removed from the workpiece by the mechanical action of irregularly shaped abrasive grains in all grinding operations. This article discusses three primary components of grinding wheels, namely, abrasive (the cutting tool), bond (the tool holder), and porosity or air for chip clearance and/or the introduction of coolant. It describes the compositions and applications of coated abrasives and types of grinding fluids, such as petroleum-base and mineral-base cutting oils, water-soluble oils, synthetic fluids, semisynthetic fluids, and water plus additives. The article concludes with information on different types of grinding processes, namely, rough grinding, precision grinding, surface grinding, cylindrical grinding, centerless grinding, internal grinding, and tool grinding.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002128
EISBN: 978-1-62708-188-7
... Abstract This article discusses the functions and chemistry of metal cutting or grinding fluids. It reviews the choice of cutting or grinding fluids that is influenced by the workpiece material, fluid characteristics, and machining operation. The article describes two application methods...
Abstract
This article discusses the functions and chemistry of metal cutting or grinding fluids. It reviews the choice of cutting or grinding fluids that is influenced by the workpiece material, fluid characteristics, and machining operation. The article describes two application methods of cutting or grinding fluids: flooding and misting. It discusses and lists the American Society for Testing and Materials standard test procedures used in establishing control of cutting and grinding fluids. The article provides information on the storage, distribution, cleaning, and disposal of cutting and grinding fluids. It concludes with information on the health implications and biology of cutting fluids.
Book Chapter
Grinding
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
... Abstract In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations...
Abstract
In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations, standard marking systems, abrasives, and bonding types. It compares bonded wheel grinding with abrasive belt grinding. The article reviews the types of grinding fluids and discusses their importance in grinding operations. It describes the specific grinding processes and provides recommendations for grinding and grinding wheels.
Image
Production grinding applications of grinding wheels. Either conventional ab...
Available to PurchasePublished: 01 December 1998
Fig. 5 Production grinding applications of grinding wheels. Either conventional abrasives or superabrasives may be employed. (a) Horizontal-spindle surface grinding. (b) Vertical-spindle surface grinding. (c) Creep feed grinding. (d) Outside diameter cylindrical grinding. (e) Internal grinding
More
Image
Schematic of a cylindrical grinding setup in which a grinding wheel is gene...
Available to PurchasePublished: 01 January 1989
Fig. 7 Schematic of a cylindrical grinding setup in which a grinding wheel is generating internal threads on a piece of tubing
More
Image
Two methods of centerless thread grinding. (a) Down grinding. (b) Up grindi...
Available to PurchasePublished: 01 January 1989
Image
Relating internal and external cylindrical grinding to surface grinding usi...
Available to PurchasePublished: 01 January 1989
Fig. 7 Relating internal and external cylindrical grinding to surface grinding using the equivalent diameter. (a) For internal grinding with wheel diameter, D S , of 91.4 mm (3.6 in.) and workpiece diameter, D W , of 102 mm (4.0 in.), the equivalent diameter, D E obtained is 914 mm
More
Image
Pendulum surface grinding (a) compared to creep-feed surface grinding (b), ...
Available to PurchasePublished: 01 January 1989
Fig. 24 Pendulum surface grinding (a) compared to creep-feed surface grinding (b), resulting in decreased air-cutting time (c). Air-cutting time in horizontal-spindle reciprocating-table grinding, with its many light passes over the workpiece, is eliminated in creep-feed grinding because
More
Image
Applying creep-feed grinding methods to a form grinding operation requiring...
Available to PurchasePublished: 01 January 1989
Fig. 30 Applying creep-feed grinding methods to a form grinding operation requiring large stock removal
More
Image
Published: 01 January 1989
Image
Schematic illustrating interactions in the grinding zone of a grinding whee...
Available to PurchasePublished: 01 January 1989
Fig. 14 Schematic illustrating interactions in the grinding zone of a grinding wheel/workpiece interface. 1, abrasive/work interface; 2, chip/bond interface; 3, chip/work interface; 4, bond/work interface
More
Image
Published: 01 November 1995
Image
Mating fracture surfaces of commercial 75-mm (3-in.) diam grinding balls. F...
Available to PurchasePublished: 01 January 1987
Fig. 541 Mating fracture surfaces of commercial 75-mm (3-in.) diam grinding balls. Fracture was caused by severe ball-on-ball impacts in laboratory tests. Left top and bottom: Commercial forged and heat-treated low-alloy steel ball. Composition: 0.63% C, 0.90% Mn, 0.76% Si, 0.66% Cr, 0.018% P
More
1