1-20 of 1357

Search Results for grinding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003747
EISBN: 978-1-62708-177-1
... Abstract This article illustrates how objective experiments and comparisons can be used to develop surface preparation procedures for metallographic examination of structural features of metals. These procedures are classified as machining, grinding and abrasion, or polishing. The article...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009073
EISBN: 978-1-62708-177-1
... Abstract Rough grinding and polishing of specimens are required to prepare fiber-reinforced composite samples for optical analysis. This article discusses the consumables, process variables, and the equipment that influence the sample preparation procedure. It describes the hand and automated...
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002141
EISBN: 978-1-62708-188-7
... Abstract This article discusses the various elements of thread grinding processes, including thread grinding machines, tolerances, wheel selection, grinding speed, and grinding fluids. It describes truing of grinding wheels and reviews the process applications. In addition, the article...
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002166
EISBN: 978-1-62708-188-7
... Abstract Electrical discharge grinding (EDG) is much like electrical discharge machining except that the electrode (tool) is a rotating graphite wheel. This article commences with a schematic illustration of a setup for EDG wheels and discusses the control operation of the EDG setup...
Book Chapter

By Richard P. Lindsay
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002150
EISBN: 978-1-62708-188-7
... Abstract This article discusses the principles of grinding process. It illustrates a typical wheel-work characteristic chart relating surface finish, wheel wear rate, metal removal rate, and power to the normal force. The article also reviews the effect of variations in work material, wheel...
Book Chapter

By Robert E. Phillips
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002161
EISBN: 978-1-62708-188-7
... Abstract This article describes the various characteristics of electrochemical grinding (ECG). It discusses grinding methods that can be performed with ECG components, namely, the electrolyte delivery and circulating system, the electrolyte, the DC power supply, grinding wheel...
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002162
EISBN: 978-1-62708-188-7
... Abstract Electrochemical discharge grinding (ECDG) is a combination of electrochemical grinding (ECG) and electrical discharge grinding (EDG), with some modification of each. This article commences with a schematic illustration of a setup for ECDG using a solid bonded graphite wheel...
Book Chapter

By William N. Ault
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002151
EISBN: 978-1-62708-188-7
... Abstract Metal is removed from the workpiece by the mechanical action of irregularly shaped abrasive grains in all grinding operations. This article discusses three primary components of grinding wheels, namely, abrasive (the cutting tool), bond (the tool holder), and porosity or air for chip...
Book Chapter

By Elliot S. Nachtman
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002128
EISBN: 978-1-62708-188-7
... Abstract This article discusses the functions and chemistry of metal cutting or grinding fluids. It reviews the choice of cutting or grinding fluids that is influenced by the workpiece material, fluid characteristics, and machining operation. The article describes two application methods...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
... Abstract In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations...
Image
Published: 01 December 1998
Fig. 5 Production grinding applications of grinding wheels. Either conventional abrasives or superabrasives may be employed. (a) Horizontal-spindle surface grinding. (b) Vertical-spindle surface grinding. (c) Creep feed grinding. (d) Outside diameter cylindrical grinding. (e) Internal grinding More
Image
Published: 01 January 1989
Fig. 7 Schematic of a cylindrical grinding setup in which a grinding wheel is generating internal threads on a piece of tubing More
Image
Published: 01 January 1989
Fig. 8 Two methods of centerless thread grinding. (a) Down grinding. (b) Up grinding More
Image
Published: 01 January 1989
Fig. 7 Relating internal and external cylindrical grinding to surface grinding using the equivalent diameter. (a) For internal grinding with wheel diameter, D S , of 91.4 mm (3.6 in.) and workpiece diameter, D W , of 102 mm (4.0 in.), the equivalent diameter, D E obtained is 914 mm More
Image
Published: 01 January 1989
Fig. 24 Pendulum surface grinding (a) compared to creep-feed surface grinding (b), resulting in decreased air-cutting time (c). Air-cutting time in horizontal-spindle reciprocating-table grinding, with its many light passes over the workpiece, is eliminated in creep-feed grinding because More
Image
Published: 01 January 1989
Fig. 30 Applying creep-feed grinding methods to a form grinding operation requiring large stock removal More
Image
Published: 01 January 1989
Fig. 11 Production grinding applications of diamond grinding wheels More
Image
Published: 01 January 1989
Fig. 14 Schematic illustrating interactions in the grinding zone of a grinding wheel/workpiece interface. 1, abrasive/work interface; 2, chip/bond interface; 3, chip/work interface; 4, bond/work interface More
Image
Published: 01 November 1995
Fig. 12 Production grinding applications of diamond grinding wheels More
Image
Published: 01 January 1987
Fig. 541 Mating fracture surfaces of commercial 75-mm (3-in.) diam grinding balls. Fracture was caused by severe ball-on-ball impacts in laboratory tests. Left top and bottom: Commercial forged and heat-treated low-alloy steel ball. Composition: 0.63% C, 0.90% Mn, 0.76% Si, 0.66% Cr, 0.018% P More