Skip Nav Destination
Close Modal
Search Results for
green lubricants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 332 Search Results for
green lubricants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006401
EISBN: 978-1-62708-192-4
.... The article details the classifications of lubrication regimes, namely, boundary, mixed, hydrodynamic, and elastohydrodynamic lubrications. It discusses the various types of lubricant materials and additives, including liquid lubricants, solid lubricants, gaseous lubricants, greases, green lubricants...
Abstract
This article provides a brief introduction to lubrication as a method to reduce friction between two surfaces. It discusses the surface characteristics of parts and explores how lubrication helps separate two contacting surfaces and thereby decreases the coefficient of friction. The article details the classifications of lubrication regimes, namely, boundary, mixed, hydrodynamic, and elastohydrodynamic lubrications. It discusses the various types of lubricant materials and additives, including liquid lubricants, solid lubricants, gaseous lubricants, greases, green lubricants, and nanomaterials. The article also reviews the properties of lubricants. It describes the tribological evaluation of lubricants, including stribeck test, four-ball test, block-on-ring test, pin-in-vee test, and reciprocating motion test.
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Fig. 15 Effect of admixed lubricant on green strength of water-atomized 4600 low-alloy steel powder
More
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Image
Published: 01 December 1998
Fig. 6 Effect of admixed lubricant on green strength of water-atomized 4600 low-alloy steel powder. Source: Ref 5
More
Image
Published: 01 December 1998
Fig. 24 The effect of powder lubrication on the green properties of pressed sponge iron. The green density is shown as a function of the amount of zinc stearate for three compaction pressures. Source: Ref 4
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006097
EISBN: 978-1-62708-175-7
... the influence of compaction characteristics of stainless steel powders in tool materials selection, lubrication, annealing, double pressing/double sintering, and warm compaction. annealing apparent density compressibility double sintering flow rate green density green strength lubrication metal...
Abstract
This article provides an overview of the compaction of metal powder in a rigid die and reviews the compaction characteristics of stainless steel powders, including green density, compressibility, green strength, apparent density, flow rate, and sintered density. It describes the influence of compaction characteristics of stainless steel powders in tool materials selection, lubrication, annealing, double pressing/double sintering, and warm compaction.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006032
EISBN: 978-1-62708-175-7
... green strength hardness lubrication metal powders particle shape particle size Rattler test transverse bend test COMPRESSIBILITY AND COMPACTIBILITY are terms that define the ability to form “green” (unsintered) compact from the die pressing of powders. In general terms, compressibility...
Abstract
This article describes several factors, which help in determining the compressibility of metal powders: particle shape, density, composition, hardness, particle size, lubrication, and compacting. It discusses the uses of annealing metal powders and describes compressibility testing of the powders. The article details green strength and its mechanism and the variables affecting the strength. It also discusses two test methods for determining the green strength: the Rattler test and the transverse bend test.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003053
EISBN: 978-1-62708-200-6
... to as possible to their final shape. The article also provides useful information on drying methods, shrinkage, and defects as well as the removal of organic processing aids such as dispersants, binders, plasticizers, and lubricants. ceramic forming process drying green machining organics removal...
Abstract
Ceramic-forming processes usually start with a powder which is then compacted into a porous shape, achieving maximum particle packing density with a high degree of uniformity. This article compares and contrasts several forming processes, including mechanical consolidation, dry pressing, cold isostatic pressing, slip casting, tape casting, roll compaction, extrusion, and injection molding. It describes the advantages, equipment and tooling, and material requirements of green machining, the machining of ceramics in an unfired state with the intent of producing parts as close to as possible to their final shape. The article also provides useful information on drying methods, shrinkage, and defects as well as the removal of organic processing aids such as dispersants, binders, plasticizers, and lubricants.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006445
EISBN: 978-1-62708-190-0
... and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography...
Abstract
The potential for introducing defects during processing becomes greater as the relative density of pressed and sintered powder metallurgy (PM) parts increases and more multilevel parts with complex geometric shapes are produced. This article discusses the potential defects in pressed and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography, and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density determination, and visual inspection.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006083
EISBN: 978-1-62708-175-7
... and major premix additives, and the resulting green strength of a standard test bar after cooling the sample to room temperature. The unique lubricants designed for warm die compaction coupled with elevated die temperatures increase the green strength by 50 to 100% over that achieved with the most commonly...
Abstract
Warm compaction uses both powder heating and die heating to effect higher component densities, whereas warm die compaction uses only die heating to achieve higher density. This article explains the influences of green and sintered properties and pore-free density during compaction of materials. It provides information on the concept of pore-free density and process considerations: die heating and powder heating. The article concludes with a review of the tooling design for warm compaction.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006105
EISBN: 978-1-62708-175-7
... properties of a powder and the lubricant content ( Ref 5 ). Green strength is normally reduced as the total lubricant content is increased, as a consequence of reduced interlocking of the metal powder particles. At typical lubricant system contents, the flow rate is usually slowed and the apparent density...
Abstract
Development of the properties of copper powder metallurgy parts is affected by pressing and sintering processes used in the production of components, such as contacts, carbon brushes, and friction materials. This article briefly describes the powder properties of copper and discusses the roles of lubricant and compaction dies in pressing of copper powders. It explains the structural defects that originate during the compaction process of PM parts. The article also provides information on sintering, re-pressing, and re-sintering of copper PM parts.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007027
EISBN: 978-1-62708-387-4
..., and lubricant) into a green-state component; (2) sintering the green part in a furnace at a temperature typically between 1120 and 1250 °C (2050 and 2350 °F) in an inert or reducing atmosphere (typically 90% N 2 and 10% H 2 ) for a designated time (usually 30 minutes); and (3) after the sintering, applying...
Abstract
This article focuses on the fractography features of the conventional powdered metal (PM) process for ferrous powders. It discusses porosity, which is one of the inherent features present in components produced by conventional press-and-sinter processes, and green cracks, which are the most common fracture issue in conventional PM processes. It explains the effect of post-sintering operations. The article also presents the common ferrous powder metallurgy materials.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006106
EISBN: 978-1-62708-175-7
... the relationship between compacted properties of a powder and the lubricant system content ( Ref 3 ). Green strength is normally reduced as the total lubricant content is increased, as a consequence of reduced interlocking of the metal powder particles. Fig. 3 Effect of lubricant on green strength...
Abstract
Bronze and brass alloys are two key classes of materials in copper-base powder metallurgy applications. They are often compacted using mechanical or hydraulic pressing machines. This article provides an overview of the powder pressing process, providing information on the powder properties of bronze and brass and the roles of lubricant and compaction dies in the pressing process. It discusses the structural defects that originate during the compaction process. The article also describes the major factors that influence the sintering response in bronze, prealloyed bronze, brass, and nickel-silver.
Image
Published: 30 September 2015
Fig. 7 Green strength versus green density of 316L powder admixed with various lubricants and additives compacted at 414, 552, and 662 MPa (30, 40, and 48 tsi), respectively. Source: Ref 3
More
Image
Published: 30 September 2015
Fig. 14 Effect of internal powder porosity on (a) green strength and (b) green density. Solid and porous iron powders pressed at 414 MPa (30 tsi) using die wall lubrication. Figures in parentheses signify BET-specific surface areas and average intraparticle pore sizes of powders.
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006053
EISBN: 978-1-62708-175-7
... cracks or pullout of powder. This is due to the large surface contact area and friction between the tool and green compact. Powder characteristics such as lubricant content and type can affect the friction between the tool and compact. Also, tools should be well polished and kept clean throughout...
Abstract
Consolidation and shaping of grade powders is carried out using several methods, depending on the size, complexity, shape, and quantity of parts required. This article details the powder consolidation methods of carbide powders: uniaxial pressing, cold isostatic pressing, extrusion, green machining, and injection molding.
Image
Published: 01 December 1998
Fig. 5 Effect of particle porosity on (a) green density and (b) green strength of solid and porous iron powders. Powders were pressed at 414 MPa (30 tsi) using die wall lubrication. The figures in parentheses in (a) signify specific surface areas (as measured by the gas adsorption method
More
1