Skip Nav Destination
Close Modal
Search Results for
gray iron castings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 838 Search Results for
gray iron castings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005323
EISBN: 978-1-62708-187-0
... the properties and specifications of test bar. Properties of gray iron, such as fatigue limit, pressure tightness, impact resistance, machinability, and dimensional stability, at both room and elevated temperature, are reviewed. Wear behavior of gray iron castings during sliding contact under conditions...
Abstract
This article begins with an overview of classes and applications of gray iron. It discusses the castability of gray iron in terms of section sensitivity and fluidity. The article provides information on the dimensions of prevailing sections recommended for gray irons and reviews the properties and specifications of test bar. Properties of gray iron, such as fatigue limit, pressure tightness, impact resistance, machinability, and dimensional stability, at both room and elevated temperature, are reviewed. Wear behavior of gray iron castings during sliding contact under conditions of normal lubrication is also discussed. The article evaluates the use of alloys and heat treatment to modify as-cast properties. It concludes with information on the physical properties of gray iron castings.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006329
EISBN: 978-1-62708-179-5
... casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the castability factors, such as fluidity, shrinkage, and resistance, of gray iron. Typical cupola charge compositions and the final analyses for class 30 and class...
Abstract
Foundry practices critical to the production of cast irons include melting, alloying, molten metal treatment, pouring, and the design of feeding systems (gating and risering) to allow proper filling of the casting mold. This article reviews these production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the castability factors, such as fluidity, shrinkage, and resistance, of gray iron. Typical cupola charge compositions and the final analyses for class 30 and class 40 gray iron castings are presented in a table. The article describes the induction melting and arc furnace melting used in gray iron foundries. It also reviews the inoculation methods such as stream inoculation and mold inoculation, of gray iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006316
EISBN: 978-1-62708-179-5
... Abstract Thin-wall gray cast iron (TWGCI) can be seen as a potential material for the preparation of lightweight castings in automotive engineering applications. This article discusses the most important challenges for TWGCI: cooling rate, solidification, macrostructure, microstructure...
Abstract
Thin-wall gray cast iron (TWGCI) can be seen as a potential material for the preparation of lightweight castings in automotive engineering applications. This article discusses the most important challenges for TWGCI: cooling rate, solidification, macrostructure, microstructure, and chilling tendency. It reviews the tensile properties and thermophysical properties of gray cast iron. The article describes the variables that influence molten iron preparation: charge materials, melting furnace thermal regime, chemical composition, modification and inoculation treatment, holding time/pouring procedure, mold properties (mold temperature, thermophysical properties of mold and mold coating), and casting design.
Image
Published: 01 January 1990
Image
Published: 01 December 2008
Image
Published: 31 August 2017
Fig. 16 Occurrence of blowhole defects in gray iron castings as a function of sulfur and manganese contents. Pouring temperature was constant at 1280 °C (2335 °F). Defective coatings had blowholes associated with manganese sulfide inclusions. Source: Ref 4
More
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006321
EISBN: 978-1-62708-179-5
... Abstract Gray irons are a group of cast irons that form flake graphite during solidification, in contrast to the spheroidal graphite morphology of ductile irons. This article describes surface hardening of gray irons by flame and induction heating. It provides information on the classification...
Abstract
Gray irons are a group of cast irons that form flake graphite during solidification, in contrast to the spheroidal graphite morphology of ductile irons. This article describes surface hardening of gray irons by flame and induction heating. It provides information on the classification of the gray irons in ASTM specification. The article presents examples that illustrate the use of stress relieving to eliminate distortion and cracking. It describes the three annealing treatments of gray iron: ferritizing annealing, medium (or full) annealing, and graphitizing annealing. The article discusses the parameters of the tensile strength and hardness of a normalized gray iron casting. These include combined carbon content, pearlite spacing, and graphite morphology. The article concludes with a discussion on the induction hardening of gray iron castings.
Image
Published: 01 December 2008
Image
Published: 01 December 2008
Fig. 12 Tensile stress-strain curves for pearlite gray iron casting. Total strain is composed of plastic and elastic deformation components. Source: Ref 17
More
Image
Published: 31 August 2017
Fig. 13 Large gray iron casting in which cracks were repaired by shielded metal arc welding. Source: Ref 3
More
Image
Published: 31 August 2017
Fig. 20 Widmanstätten graphite in a gray iron casting. (a) At a lower original magnification (50×), it is difficult to observe this structure. (b) At a higher original magnification (400×), the Widmanstätten morphology becomes clearer. (c) At high original magnification (1000×), the geometric
More
Image
Published: 31 August 2017
Fig. 23 Microshrinkage in a thin section of a gray iron casting. (a) Void at arrow that developed when the liquid steadite was drawn into thicker sections of the casting. Unetched condition. (b) Same as (a) but in the etched (nital) condition. The light angular constituent is steadite
More
Image
Published: 31 August 2017
Fig. 7 Tensile stress-strain curves for pearlitic gray iron casting. Total strain is composed of plastic and elastic deformation components. Source: Ref 15
More