Skip Nav Destination
Close Modal
Search Results for
gravity castings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 494
Search Results for gravity castings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Image
Published: 01 December 2004
Fig. 49 Copper-lead alloy liner (SAE 48), gravity cast against inner wall of cylindrical steel shell (bottom). Coarse copper dendrites, blunted by addition of silver, in a continuous matrix of lead. Compare with Fig. 50 . NH 4 OH + H 2 O 2 . Original magnification 100×
More
Image
Published: 01 December 2004
Fig. 51 Copper-lead alloy liner (SAE 49), gravity cast against inside wall of cylindrical steel shell (bottom). Coarse copper dendrites (light) in a matrix of lead (dark). Compare with Fig. 52 . NH 4 OH + H 2 O 2 . Original magnification 100×
More
Image
Published: 01 June 2016
Fig. 2 Relationship between yield strength and hardness for various gravity-cast and high-pressure die-cast (HPDC) alloys. Source: Gravity-cast alloy data, Ref 3 ; HPDC AZ91 data, Ref 2 , 4 ; various AE alloy data are original
More
Image
Published: 01 June 2016
Fig. 4 Aging response of gravity-cast AZ91 solution treated at 420 °C (790 °F) and water quenched. Adapted from Ref 5
More
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
... Abstract Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article provides an overview of the common methods of aluminum shape casting. These include gravity casting, die casting, sand casting, lost foam casting...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article provides an overview of the common methods of aluminum shape casting. These include gravity casting, die casting, sand casting, lost foam casting, shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001077
EISBN: 978-1-62708-162-7
... pressure die castings, and gravity castings. It details the wrought products of zinc and zinc alloys, including flat-rolled products, wire-drawn products, extruded products, and forged products. The article also describes various properties of zinc alloys, including mechanical, thermal, electrical...
Abstract
This article describes the zinc and zinc alloys for decorative and functional applications. It focuses on the types of zinc coatings, namely, hot dip galvanizing, electrogalvanizing, metallizing, and mechanical galvanizing. The article covers the uses of zinc alloy castings, including pressure die castings, and gravity castings. It details the wrought products of zinc and zinc alloys, including flat-rolled products, wire-drawn products, extruded products, and forged products. The article also describes various properties of zinc alloys, including mechanical, thermal, electrical, chemical, and magnetic properties. The listing for each alloy includes chemical compositions, relevant specifications, mass characteristics, and fabrication characteristics.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
...; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed...
Abstract
This article provides information on the properties, compositions, designations, and applications of zinc and zinc alloys. It discusses the principal areas of application of zinc: in coatings and anodes for corrosion protection of irons and steels; in zinc casting alloys; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed as well as the three main types of wrought products: flat-rolled products, wire-drawn products, and extruded and forged products. The article also provides a section on the corrosion resistance of zinc and zinc coatings in various atmospheres.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006254
EISBN: 978-1-62708-169-6
... F AM50A Mg Al5Mn F AM60B Mg Al6Mn F AS21 Mg Al2Si1 F AS31 Mg Al3Si1 F AS41A Mg Al4Si1 F AZ91D Mg Al9Zn1 F MRI 230D Mg Al7Ca2 F MRI 153M Mg Al8Ca1 F Gravity-cast alloys AM100A Mg Al10 T4, T5, T6, T61 (c) AZ63A Mg Al6Zn3 T4, T5, T6 AZ81A Mg...
Abstract
Magnesium alloys are used predominantly for high-pressure die-cast applications in which the use of a deliberate heat treatment is uncommon. This article provides information on the heat treatment designations for magnesium alloys. It describes the effects of grain size on magnesium alloys and the relationship between hardness and mechanical properties of the alloys. The article discusses the effects of elements such as aluminum, zinc, manganese, rare earths, and yttrium, on precipitation hardening. It describes the types of heat treatment for magnesium alloys, including annealing, stress relieving, solution treating and aging, and reheat treating. The article also discusses the preventive measures for the common problems encountered in heat treating magnesium alloys; and the evaluation of the effectiveness of heat treating procedures. In addition, it presents the processing steps involved in the heat treatment of magnesium alloys and in the prevention and control of magnesium fires.
Image
Published: 01 December 2008
Fig. 7 Stress-number of cycles fatigue plot for a gravity die-cast automotive diesel engine block. The alloy is AlSi7MgCu0.5. Fatigue life was determined using rotating beam equipment. At a given stress level, a three- to ten-fold increase in fatigue life is seen when HIP is used. The fatigue
More
Image
Published: 01 December 1998
Fig. 11 Schematic of the operations of the counter-gravity low-pressure casting process. (a) Investment shell mold in the casting chamber. (b) Mold lowered to filling position. (c) Mold containing solidified castings; most of the gating has flowed back into the melt.
More
Image
Published: 30 November 2018
Image
Published: 01 January 1987
-of-the-art” 175 °C (350 °F) cure epoxy resin systems used in high-performance aerospace composites. The epoxy was gravity cast at room temperature between glass plates and cured at 175 °C (350 °F) according to the manufacturer's recommendations. Tensile specimens were then cut from the cast sheet. Both
More
Image
Published: 01 January 1987
resin, which is one of the standard “state-of-the-art” 175 °C (350 °F) cure epoxy resin systems used in high-performance aerospace composites. The epoxy was gravity cast at room temperature between glass plates and cured at 175 °C (350 °F) according to the manufacturer's recommendations. Tensile
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006513
EISBN: 978-1-62708-207-5
... casting with molten aluminum fed by gravity, low pressure, vacuum and centrifugal pressure, and squeeze casting. It discusses the major variables that affect the life of permanent molds, including pouring temperature, casting shape, cooling methods, heating cycles, storage, and cleaning. The article...
Abstract
Aluminum casting in steel and iron permanent molds is used widely throughout industry, and the vast majority of permanent mold castings are made of aluminum and its alloys. There are several methods used to cast aluminum in permanent molds. This article focuses on permanent mold casting with molten aluminum fed by gravity, low pressure, vacuum and centrifugal pressure, and squeeze casting. It discusses the major variables that affect the life of permanent molds, including pouring temperature, casting shape, cooling methods, heating cycles, storage, and cleaning. The article reviews the basic components of mold coatings: refractory fillers, binder, and carrier. Casting defects and suggested corrective actions for permanent mold casting are summarized in a table. The article concludes with a discussion on thin-wall permanent-mold castings.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006297
EISBN: 978-1-62708-179-5
... Abstract Aggregate molding, or sand casting, is the gravity pouring of liquid metal into a mold that is made of a mixture molded against a permanent pattern. This article summarizes the most important materials in the process of sand casting of cast iron, including different types of molding...
Abstract
Aggregate molding, or sand casting, is the gravity pouring of liquid metal into a mold that is made of a mixture molded against a permanent pattern. This article summarizes the most important materials in the process of sand casting of cast iron, including different types of molding aggregates, clays, water, and additives in green sand, chemically bonded organic resins, and inorganic binders in self-setting, thermosetting, and gas-triggered systems. It discusses three main types of reclamation systems: wet, dry, and thermal. The article concludes with a description of both nonpermanent and permanent mold processes.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005522
EISBN: 978-1-62708-197-9
... of low-gravity platforms and facilities for solidification processing. It provides a description of dendritic growth studies and electromagnetic levitation. The article concludes with information on the in situ and real-time monitoring of solidification processing. casting metals and alloys...
Abstract
For a wide range of new or better products, solidification processing of metallic materials from the melt is a step of uppermost importance in the industrial production chain. This article discusses the casting and solidification of molten metallic alloy along with the application of low-gravity platforms and facilities for solidification processing. It provides a description of dendritic growth studies and electromagnetic levitation. The article concludes with information on the in situ and real-time monitoring of solidification processing.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005277
EISBN: 978-1-62708-187-0
... magnesium alloys. The maximum velocity condition effectively forbids top-gating of castings. This is because liquid aluminum reaches its critical velocity of approximately 0.5 m/s (1.6 ft/s) after falling only 12.5 mm (0.5 in.) under gravity. The critical velocity of liquid iron or steel is exceeded...
Abstract
This article provides a discussion on ten rules for the effective production of reliable castings. These rules include good-quality melt, liquid front damage, liquid front stop, bubble damage, core blows, shrinkage damage, convection damage, segregation, residual stress, and location points.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... alloys may be divided into two groups: those most suitable for gravity casting by any process and those used in pressure die casting. A finer distinction is made between alloys suitable for permanent mold application and those for other gravity processes. In general, the most alloy-versatile processes...
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
1