1-20 of 522 Search Results for

grain textures

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005518
EISBN: 978-1-62708-197-9
... Abstract This article reviews the various aspects of the simulation of solidification microstructures and grain textures. It describes the grain structures and morphology of dendrites or eutectics that compose the internal structure of the grains. A particular emphasis has been put...
Image
Published: 01 December 2008
Fig. 12 Impossible-to-machine grain and texture are reproduced with ceramic cast molds. Courtesy of Unicast Development Company More
Image
Published: 01 June 2016
Fig. 18 Microstructural evolution during texture-controlled grain growth obtained by phase field simulation of a two-dimensional system consisting of 27% initially randomly distributed texture component. τ is reduced time. (a) τ = 250. (b) τ = 500. (c) τ = 750. (d) τ = 1000. Source: Ref 37 More
Image
Published: 01 December 2009
Fig. 5 Monte Carlo model simulation of texture-controlled grain growth for a material with two texture components. (a) Comparison of predicted grain-growth kinetics (solid line) and normal grain-growth kinetics (broken line). MU, model lattice units; MCS, Monte Carlo steps. (b) Simulated (100 More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003744
EISBN: 978-1-62708-177-1
... Abstract This article describes the mechanisms involved in creating texture for various metal-fabrication processes, namely, solidification, deformation, recrystallization and grain growth, thin-film deposition, and imposition of external magnetic fields. It discusses two experimental...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001759
EISBN: 978-1-62708-178-8
... Abstract Crystallographic texture measurement and analysis is an important tool for correlating material properties with microstructural features. This article describes the general approach to quantifying crystallographic texture, namely, the collection of statistical data from grain...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005401
EISBN: 978-1-62708-196-2
... the phase equilibria, crystallography, and deformation behavior of titanium and titanium alloys. The article describes the modeling and simulation of recrystallization and grain growth of single-phase beta and single-phase alpha titanium. The deformation- and transformation-texture evolution of two-phase...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
... activity). That is, the shape and evolution of the SCYS controls the stress in the grain. As a consequence, in what follows elasticity is disregarded and only plastic contribution to deformation is described. Texture Evolution and the Kinematics of Lattice Rotation The preceding section outlines...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
..., zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture...
Image
Published: 01 January 2005
Fig. 12 Monte Carlo (3D) model predictions of (a, b, c) grain structure (2D sections after 1000 MC steps) and (d) grain-growth behavior for materials with various starting textures and assumed grain-boundary properties. (a) Case A, isotropic starting texture and isotropic boundary properties More
Image
Published: 01 January 2005
Fig. 5 Monte Carlo (three-dimensional) model predictions of (a, b, and c) grain structure (two-dimensional) sections after 1000 Monte-Carlo Steps and (d) grain-growth behavior for materials with various starting textures and assumed grain-boundary properties. (a) Case A, isotropic starting More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005418
EISBN: 978-1-62708-196-2
... considering the macroscopic properties of a polycrystalline metal or alloy, the texture ( Ref 1 ), that is, the crystal orientation distribution, is the primary contributor to elastic and plastic anisotropy arising from the anisotropy of single crystals. Of course, the grain morphology and microstructural...
Image
Published: 01 December 2009
Fig. 6 Monte Carlo model predictions of the grain-size distributions after 15 Monte Carlo steps for the simulation of texture-controlled grain growth in a material with two texture components. (a) For the entire material. (b) For the grains belonging to texture component “A.” MU, model lattice More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004029
EISBN: 978-1-62708-185-6
... are gradually drawn into the “tube” that is shown. The extent to which grain orientations are concentrated within as opposed to outside the tube (and therefore the texture “intensity”) increases with the amount of rolling reduction. Following each rolling pass, the material may either recrystallize...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003233
EISBN: 978-1-62708-199-3
... Abstract Magnetic field testing includes some widely used nondestructive evaluation methods to inspect magnetic materials for defects such as cracks, voids, and inclusions and to assess other material properties, such as grain size, texture, and hardness. This article discusses the principles...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002359
EISBN: 978-1-62708-193-1
...; variables that influence the shape of surface cracks, such as grain size, residual stresses, texture, loading mode, environment, and crack coalescence; techniques for monitoring crack shape development; methods for calculating SIFs for arbitrarily shaped flaws; and simple approaches to predicting failure...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005532
EISBN: 978-1-62708-197-9
...-rays or electrons represent. The large specimen capability also means that it is practicable to measure texture in coarse-grained materials, whereas a practical upper limit to grain size with x-rays is approximately 0.2 mm. Neutrons from a spallation source differ strongly from other sources...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006282
EISBN: 978-1-62708-169-6
... of strain hardening and its effects on the mechanical properties of titanium alloys. It also discusses the factors that influence the superplasticity of titanium alloys. crystallographic texture deformation grain growth recrystallization strain hardening strengthening superplasticity titanium...
Image
Published: 01 June 2016
Fig. 20 Comparison between phase field simulation and experimental observation for texture-controlled grain growth. (a) Texture evolution. (b) Grain-growth kinetics. Source: Ref 37 More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
... of microstructure evolution. cellular automata dynamic recovery grain growth hot working microstructure evolution microstructure evolution modeling Monte-Carlo techniques plastic flow recrystallization static recovery texture evolution models thermomechanical processing IN PROCESS DESIGN...