Skip Nav Destination
Close Modal
Search Results for
grain coarsening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 398 Search Results for
grain coarsening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 October 2011
Fig. 13 Effects of various microalloying additions on the grain-coarsening temperature of austenite. Grain-coarsening temperatures depend on the microalloying level, nitrogen and/or carbon contents, and size of the precipitates. Titanium is the most efficient microalloying element for grain
More
Image
in High-Strength Structural and High-Strength Low-Alloy Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 13(a) Austenite grain coarsening during reheating and after hot rolling for a holding time of 30 min. Titanium contents were between 0.008 and 0.022% Ti. Source: Ref 25
More
Image
in Elevated-Temperature Properties of Ferritic Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 10 Grain-coarsening behavior of a modified 9Cr-1Mo steel (9Cr-1Mo steel with 0.06 to 0.10% Nb and 0.18 to 0.25% V). Source: Ref 7
More
Image
Published: 01 January 2005
Fig. 7 Austenite grain coarsening characteristics in steels containing various microalloying additions. Source: Ref 11
More
Image
in Low-Temperature Properties of Structural Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 12 Crack tip opening displacement versus the percent of grain-coarsened regions for several structural steels. Source: Ref 27
More
Image
Published: 01 January 2003
Image
Published: 01 November 1995
Fig. 11 Schematic diagram showing grain growth, densification, and coarsening kinetics vs. reciprocal temperature. Temperature ranges suitable for rate-controlled sintering and fast firing are indicated.
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006487
EISBN: 978-1-62708-207-5
... the annealing of worked structures in terms of recovery, recrystallization, and grain coarsening. It summarizes some of the annealing treatments used in conjunction with fabrication by metal working, including preheating, interannealing, self-annealing, stabilization, and stoving. The article concludes...
Abstract
Work or strain hardening is a natural consequence of most working and forming operations on aluminum and its alloys. This article describes the annealing practices of strain-hardened alloys. It lists the temper designations for strain-hardened alloys. The article discusses the annealing of worked structures in terms of recovery, recrystallization, and grain coarsening. It summarizes some of the annealing treatments used in conjunction with fabrication by metal working, including preheating, interannealing, self-annealing, stabilization, and stoving. The article concludes with information on the key process parameters affecting the final properties of aluminum alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006285
EISBN: 978-1-62708-169-6
... Abstract Annealing is an essential treatment in the fabrication of metal parts and semiproducts. This article discusses the processes involved in annealing, namely, recovery, recrystallization, and grain coarsening. It lists the heat treatment conditions of processed aluminum alloys...
Abstract
Annealing is an essential treatment in the fabrication of metal parts and semiproducts. This article discusses the processes involved in annealing, namely, recovery, recrystallization, and grain coarsening. It lists the heat treatment conditions of processed aluminum alloys. It provides information on the types of heat treatment, which include preheating, full anneal, stabilization, and stoving. The article describes the steps involved for achieving the age-hardening effect and the strongest hardening effect in aluminum. The steps to increase the strength of aluminum alloys by extremely fine, dispersed second-phase particles are: solution heat treatment, quenching, and age hardening. Finally, the article also discusses the process parameters of annealing, including the effect of strain, effect of temperature, effect of heating rate, and the effect of alloy elements, and the effect of annealing on anisotropy.
Image
in Low-Temperature Properties of Structural Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 9 Regions of the heat-affected zone. (a) The HAZ regions in a single-bevel multipass weld. SCHAZ, subcritical heat-affected zone; ICHAZ, intercritical heat-affected zone; FGHAZ, fine-grain heat-affected zone; SRGCHAZ, subcritically reheated grain-coarsened heat-affected zone; IRGCHAZ
More
Image
Published: 01 January 1996
Fig. 23 Schematic diagram of the variety of microstructures that can be obtained in the HAZs of multipass welds. GR, grain refined; IC, intercritical; SC, subcritical; ICGC, intercritical grain coarsened; SCGC, subcritical grain coarsened
More
Image
Published: 01 January 2005
of austenite to ferrite begins on cooling; T GC , grain-coarsening temperature; T rs , recrystallization stop temperature. T GC is defined as the temperature above which grain coarsening by secondary recrystallization commences and refers to the temperature above which the undissolved precipitates
More
Image
Published: 01 October 2014
Fig. 9 Austenite microstructure refinement by thermal cycling of 18Ni (300) Maraging steel. (a) Original specimen grain coarsened at 1150 °C (2100 °F) for 1 h and then water quenched. ASTM grain size: 1.5. (b) Specimen (a) grain refined by heating to 1025 °C (1880 °F) for 10 min and then water
More
Image
Published: 15 June 2020
Fig. 14 Micrographs showing binder jet copper (a) after sintering and (b) after hot isostatic pressing (HIP). Some grain coarsening is evident after HIP. Source: Ref 43
More
Image
Published: 15 June 2020
Fig. 5 Microstructures of Cu-1.3Cr fabricated with laser powder-bed fusion. (a) As-fabricated condition. (b) Limited grain coarsening after direct aging at 450 °C (840 °F). Source: Ref 61
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001341
EISBN: 978-1-62708-173-3
... HAZ of a Single-Pass Weld Peak Temperature-Cooling Time Diagrams The gradient in microstructure than can be obtained in a single-pass weld is shown in Fig. 3 . High peak temperatures in the HAZ just adjacent to the fusion line cause coarsening of the austenite (γ) grains, and this in turn...
Abstract
Solid-state transformations occurring in a weld are highly nonequilibrium in nature and differ distinctly from those experienced during casting, thermomechanical processing, and heat treatment. This article focuses on welding metallurgy of fusion welding of steels and highlights the fundamental principles that form the basis of many of the developments in steels and consumables for welding. Examples in the article are largely drawn from the well-known and relatively well-studied case of ferritic steel weldments to illustrate the special physical metallurgical considerations brought about by the weld thermal cycles and by the welding environment. The article provides information on welds in other alloy systems such as stainless steels and aluminum-base, nickel-base, and titanium-base alloys.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005613
EISBN: 978-1-62708-174-0
..., as illustrated in Fig. 4 for a carbon steel. Very high peak temperatures ( T p ) in the regions immediately adjacent to the fusion line cause coarsening of the austenite (γ) grains, and this in turn increases the hardenability of this region relative to the other subzones. The slower the heating rate...
Abstract
Solid-state transformations occurring in a weld are highly nonequilibrium in nature and differ distinctly from those experienced during casting, thermomechanical processing, and heat treatment. This article provides a description of the special factors affecting transformation behavior in a weldment. It reviews the heat-affected and fusion zones of single-pass and multi-pass weldments. The article also includes a discussion on the welds in alloy systems, such as stainless steels and aluminum-base, nickel-base, and titanium-base alloys.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0005547
EISBN: 978-1-62708-161-0
... and Space K-BOP Kawasaki basic oxygen process G modulus of rigidity kg kilogram Administration gal gallon NDT nil ductility temperature GAR grain aspect ratio km kilometer NDTT nil ductility transition temperature GC grain-coarsened KMS Kloeckner metallurgy scrap nm nanometer GCHAZ grain-coarsened heat...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005786
EISBN: 978-1-62708-165-8
... to control hardenability, because finer austenite is usually preferred to refine the final microstructure, enhancing strength and toughness. Due to grain growth or grain coarsening, the austenite grain size is expected to increase with time or temperature, as shown for pure iron in Fig. 12 . In alloys...
Abstract
Austenitization refers to heating into the austenite phase field, during which the austenite structure is formed. This article highlights the purpose of austenitization, and reviews the mechanism and importance of thermodynamics and kinetics of austenite structure using an iron-carbon binary phase diagram. It also describes the effects of austenite grain size, and provides useful information on controlling the austenite grain size using the thermomechanical process.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003995
EISBN: 978-1-62708-185-6
... , temperature at which transformation to ferrite or to ferrite plus cementite is completed on cooling; T Ar 3 , temperature at which transformation of austenite to ferrite begins on cooling; T GC , grain-coarsening temperature; T rs , recrystallization stop temperature. T GC is defined...
Abstract
Thermomechanical processing (TMP) refers to various metal forming processes that involve careful control of thermal and deformation conditions to achieve products with required shape specifications and good properties. This article describes TMP methods in producing hot-rolled steel and reviews how improvements in the strength and toughness depend on the synergistic effect of microalloy additions and on carefully controlled thermomechanical conditions. It discusses TMP variables and the general distinctions between conventional hot rolling and common types of controlled-rolling schedules. The article describes the metallurgical processes in grain refinement of austenite steel by hot working, such as recovery and recrystallization and strain-induced transformation. The grain refinement in high strength low alloy steel by alloy addition is also discussed. The article provides an outline on the key stages of deformation, and the required metallurgical information at each of these stages.
1